Spaces:
Sleeping
Sleeping
import pandas as pd | |
import streamlit as st | |
import warnings | |
warnings.filterwarnings("ignore") | |
from sklearn.linear_model import LogisticRegression | |
from sklearn.model_selection import train_test_split | |
from sklearn.metrics import accuracy_score | |
import numpy as np | |
import matplotlib.pyplot as plt | |
# Load dataset | |
df=pd.read_csv(r"data.csv") | |
import streamlit as st | |
st.markdown( | |
""" | |
<style> | |
.stApp { | |
background-color: #e3f2fd; /* Try sky blue or another color */ | |
padding: 12px; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
st.markdown("## π Vehicle Brake System Fault Detection") | |
st.markdown("#### Enter Brake Sensor Values to Predict Any System Fault") | |
### filling the mising values | |
df["Brake_Pressure"] = df["Brake_Pressure"].fillna(df["Brake_Pressure"].mean()) | |
df["Pad_Wear_Level"] = df["Pad_Wear_Level"].fillna(df["Pad_Wear_Level"].mean()) | |
df["ABS_Status"] = df["ABS_Status"].fillna(df["ABS_Status"].mean()) | |
df["Wheel_Speed_FL"] = df["Wheel_Speed_FL"].fillna(df["Wheel_Speed_FL"].mean()) | |
df["Wheel_Speed_FR"] = df["Wheel_Speed_FR"].fillna(df["Wheel_Speed_FR"].mean()) | |
df["Wheel_Speed_RL"] = df["Wheel_Speed_RL"].fillna(df["Wheel_Speed_RL"].mean()) | |
df["Wheel_Speed_RR"] = df["Wheel_Speed_RR"].fillna(df["Wheel_Speed_RR"].mean()) | |
df["Fluid_Temperature"] = df["Fluid_Temperature"].fillna(df["Fluid_Temperature"].mean()) | |
df["Pedal_Position"] = df["Pedal_Position"].fillna(df["Pedal_Position"].mean()) | |
# Prepare data | |
x=df.drop("Fault",axis=1) | |
y=df["Fault"] | |
Brake_Pressure = st.slider("π¨ Brake Pressure (psi)", min_value=50.0, max_value=500.0, step=0.1) | |
Pad_Wear_Level = st.slider("π Pad Wear Level (%)", min_value=0.0, max_value=100.0, step=0.1) | |
ABS_Status = st.slider("π ABS Status (0 = Off, 1 = On)", min_value=0, max_value=1, step=1) | |
Wheel_Speed_FL = st.slider("βοΈ Wheel Speed FL (km/h)", min_value=0.0, max_value=400.0, step=0.1) | |
Wheel_Speed_FR = st.slider("βοΈ Wheel Speed FR (km/h)", min_value=0.0, max_value=400.0, step=0.1) | |
Wheel_Speed_RL = st.slider("βοΈ Wheel Speed RL (km/h)", min_value=0.0, max_value=300.0, step=0.1) | |
Wheel_Speed_RR = st.slider("βοΈ Wheel Speed RR (km/h)", min_value=0.0, max_value=300.0, step=0.1) | |
Fluid_Temperature = st.slider("π‘οΈ Fluid Temperature (Β°C)", min_value=-20.0, max_value=150.0, step=0.1) | |
Pedal_Position = st.slider("π¦Ά Pedal Position (%)", min_value=0.0, max_value=100.0, step=0.1) | |
# Split and train | |
from sklearn.linear_model import LogisticRegression | |
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=29) | |
lr = LogisticRegression() | |
lr.fit(x_train,y_train) | |
y_pred=lr.predict(x_test) | |
print("accuracy_score:",accuracy_score(y_test,y_pred)) | |
# User input DataFrame | |
user_data = pd.DataFrame([[Brake_Pressure, Pad_Wear_Level, ABS_Status, Wheel_Speed_FL , Wheel_Speed_FR,Wheel_Speed_RL,Wheel_Speed_RR, | |
Fluid_Temperature,Pedal_Position]], | |
columns=["Brake_Pressure", "Pad_Wear_Level", "ABS_Status", "Wheel_Speed_FL", "Wheel_Speed_FR", | |
"Wheel_Speed_RL","Wheel_Speed_RR","Fluid_Temperature","Pedal_Position"]) | |
if st.button("π Predict Brake Fault"): | |
y_pred = lr.predict(user_data) | |
prob = lr.predict_proba(user_data)[0][1] | |
if y_pred[0] == 1: | |
st.error(f"π¨ Fault Detected in Brake System! (Confidence: {prob:.2%})") | |
st.subheader("π Identified Possible Issues:") | |
# Diagnosis based on user inputs | |
issues = [] | |
if Brake_Pressure < 60 or Brake_Pressure > 130: | |
issues.append("π΄ **Abnormal Brake Pressure** β should be between 60 and 130. Check hydraulic pressure or brake fluid levels.") | |
if Pad_Wear_Level >= 80: | |
issues.append("π **Brake Pads Critically Worn** β pad wear is above 80%. Immediate replacement recommended.") | |
elif Pad_Wear_Level >= 60: | |
issues.append("π‘ **Brake Pads Heavily Worn** β nearing replacement. Monitor closely.") | |
if ABS_Status == 0: | |
issues.append("π΅ **ABS System Not Active** β ABS is off or malfunctioning. This may reduce braking safety on wet or slippery roads.") | |
## for Wheel_Speed_FL | |
if Wheel_Speed_FL < 0 or Wheel_Speed_FL > 100: | |
issues.append("π΄ **Front Left Wheel Speed Abnormal** β value out of expected range (0β130 km/h). Check wheel sensor or brake system.") | |
# For Front Right Wheel | |
if Wheel_Speed_FR < 0 or Wheel_Speed_FR > 130: | |
issues.append("π΄ **Front Right Wheel Speed Abnormal** β out of expected range (0β130 km/h).") | |
# Rear Left | |
if Wheel_Speed_RL < 0 or Wheel_Speed_RL > 130: | |
issues.append("π΄ **Rear Left Wheel Speed Abnormal** β out of expected range (0β130 km/h).") | |
# Rear Right | |
if Wheel_Speed_RR < 0 or Wheel_Speed_RR > 130: | |
issues.append("π΄ **Rear Right Wheel Speed Abnormal** β out of expected range (0β130 km/h).") | |
## Fluid_Temperature | |
if Fluid_Temperature < -20 or Fluid_Temperature > 120: | |
issues.append("π₯ **Abnormal Brake Fluid Temperature** β should be between -20Β°C and 120Β°C. Check for overheating or freezing issues.") | |
# Moderate brake pedal press (between 20 and 60) | |
if 20 < Pedal_Position < 60: | |
issues.append("π‘ **Moderate Brake Pedal Pressed** β normal city or highway braking.") | |
# Hard/full brake press (between 60 and 100) | |
if 60 <= Pedal_Position <= 100: | |
issues.append("π **Brake Pedal Fully Pressed** β full braking detected. If pressure or wheel speed is abnormal, check for faults.") | |
# Low or no brake engagement | |
if Pedal_Position <= 20: | |
issues.append("π **Low Brake Pedal Engagement** β either not braking or sensor reading may be inaccurate.") | |
if len(issues) > 0: | |
for issue in issues: | |
st.markdown(f"- {issue}") | |
else: | |
st.info("No specific fault signals from input values, but model still detected an issue. Please consult a technician.") | |
else: | |
st.success(f"β No Fault Detected. (Confidence: {1 - prob:.2%})") | |
st.info("π Your vehicle's brake system appears healthy.") | |