Sowmith22 commited on
Commit
bd7c921
Β·
verified Β·
1 Parent(s): 5b50ebb

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +138 -0
app.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import streamlit as st
3
+ import warnings
4
+ warnings.filterwarnings("ignore")
5
+ from sklearn.linear_model import LogisticRegression
6
+ from sklearn.model_selection import train_test_split
7
+ from sklearn.metrics import accuracy_score
8
+ import numpy as np
9
+ import matplotlib.pyplot as plt
10
+
11
+ # Load dataset
12
+ df=pd.read_csv(r"C:\Users\91879\Downloads\data.csv")
13
+ import streamlit as st
14
+
15
+ st.markdown(
16
+ """
17
+ <style>
18
+ .stApp {
19
+ background-color: #e3f2fd; /* Try sky blue or another color */
20
+ padding: 12px;
21
+ }
22
+ </style>
23
+ """,
24
+ unsafe_allow_html=True
25
+ )
26
+
27
+
28
+ st.markdown("## πŸš— Vehicle Brake System Fault Detection")
29
+ st.markdown("#### Enter Brake Sensor Values to Predict Any System Fault")
30
+
31
+
32
+
33
+ ### filling the mising values
34
+ df["Brake_Pressure"] = df["Brake_Pressure"].fillna(df["Brake_Pressure"].mean())
35
+ df["Pad_Wear_Level"] = df["Pad_Wear_Level"].fillna(df["Pad_Wear_Level"].mean())
36
+ df["ABS_Status"] = df["ABS_Status"].fillna(df["ABS_Status"].mean())
37
+ df["Wheel_Speed_FL"] = df["Wheel_Speed_FL"].fillna(df["Wheel_Speed_FL"].mean())
38
+ df["Wheel_Speed_FR"] = df["Wheel_Speed_FR"].fillna(df["Wheel_Speed_FR"].mean())
39
+ df["Wheel_Speed_RL"] = df["Wheel_Speed_RL"].fillna(df["Wheel_Speed_RL"].mean())
40
+ df["Wheel_Speed_RR"] = df["Wheel_Speed_RR"].fillna(df["Wheel_Speed_RR"].mean())
41
+ df["Fluid_Temperature"] = df["Fluid_Temperature"].fillna(df["Fluid_Temperature"].mean())
42
+ df["Pedal_Position"] = df["Pedal_Position"].fillna(df["Pedal_Position"].mean())
43
+
44
+
45
+ # Prepare data
46
+ x=df.drop("Fault",axis=1)
47
+ y=df["Fault"]
48
+
49
+
50
+ Brake_Pressure = st.slider("πŸ’¨ Brake Pressure (psi)", min_value=50.0, max_value=500.0, step=0.1)
51
+ Pad_Wear_Level = st.slider("πŸ›ž Pad Wear Level (%)", min_value=0.0, max_value=100.0, step=0.1)
52
+ ABS_Status = st.slider("πŸ›‘ ABS Status (0 = Off, 1 = On)", min_value=0, max_value=1, step=1)
53
+ Wheel_Speed_FL = st.slider("βš™οΈ Wheel Speed FL (km/h)", min_value=0.0, max_value=400.0, step=0.1)
54
+ Wheel_Speed_FR = st.slider("βš™οΈ Wheel Speed FR (km/h)", min_value=0.0, max_value=400.0, step=0.1)
55
+ Wheel_Speed_RL = st.slider("βš™οΈ Wheel Speed RL (km/h)", min_value=0.0, max_value=300.0, step=0.1)
56
+ Wheel_Speed_RR = st.slider("βš™οΈ Wheel Speed RR (km/h)", min_value=0.0, max_value=300.0, step=0.1)
57
+ Fluid_Temperature = st.slider("🌑️ Fluid Temperature (°C)", min_value=-20.0, max_value=150.0, step=0.1)
58
+ Pedal_Position = st.slider("🦢 Pedal Position (%)", min_value=0.0, max_value=100.0, step=0.1)
59
+
60
+
61
+
62
+ # Split and train
63
+ from sklearn .linear_model import LogisticRegression
64
+ x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=29)
65
+ lr = LogisticRegression()
66
+ lr.fit(x_train,y_train)
67
+ y_pred=lr.predict(x_test)
68
+ print("accuracy_score:",accuracy_score(y_test,y_pred))
69
+
70
+ # User input DataFrame
71
+ user_data = pd.DataFrame([[Brake_Pressure, Pad_Wear_Level, ABS_Status, Wheel_Speed_FL , Wheel_Speed_FR,Wheel_Speed_RL,Wheel_Speed_RR,
72
+ Fluid_Temperature,Pedal_Position]],
73
+ columns=["Brake_Pressure", "Pad_Wear_Level", "ABS_Status", "Wheel_Speed_FL", "Wheel_Speed_FR",
74
+ "Wheel_Speed_RL","Wheel_Speed_RR","Fluid_Temperature","Pedal_Position"])
75
+
76
+
77
+ if st.button("πŸ” Predict Brake Fault"):
78
+ y_pred = lr.predict(user_data)
79
+ prob = lr.predict_proba(user_data)[0][1]
80
+
81
+ if y_pred[0] == 1:
82
+ st.error(f"🚨 Fault Detected in Brake System! (Confidence: {prob:.2%})")
83
+ st.subheader("πŸ” Identified Possible Issues:")
84
+
85
+ # Diagnosis based on user inputs
86
+ issues = []
87
+ if Brake_Pressure < 60 or Brake_Pressure > 130:
88
+ issues.append("πŸ”΄ **Abnormal Brake Pressure** β€” should be between 60 and 130. Check hydraulic pressure or brake fluid levels.")
89
+
90
+ if Pad_Wear_Level >= 80:
91
+ issues.append("🟠 **Brake Pads Critically Worn** β€” pad wear is above 80%. Immediate replacement recommended.")
92
+ elif Pad_Wear_Level >= 60:
93
+ issues.append("🟑 **Brake Pads Heavily Worn** β€” nearing replacement. Monitor closely.")
94
+
95
+ if ABS_Status == 0:
96
+ issues.append("πŸ”΅ **ABS System Not Active** β€” ABS is off or malfunctioning. This may reduce braking safety on wet or slippery roads.")
97
+ ## for Wheel_Speed_FL
98
+ if Wheel_Speed_FL < 0 or Wheel_Speed_FL > 100:
99
+ issues.append("πŸ”΄ **Front Left Wheel Speed Abnormal** β€” value out of expected range (0–130 km/h). Check wheel sensor or brake system.")
100
+
101
+ # For Front Right Wheel
102
+ if Wheel_Speed_FR < 0 or Wheel_Speed_FR > 130:
103
+ issues.append("πŸ”΄ **Front Right Wheel Speed Abnormal** β€” out of expected range (0–130 km/h).")
104
+
105
+ # Rear Left
106
+ if Wheel_Speed_RL < 0 or Wheel_Speed_RL > 130:
107
+ issues.append("πŸ”΄ **Rear Left Wheel Speed Abnormal** β€” out of expected range (0–130 km/h).")
108
+
109
+ # Rear Right
110
+ if Wheel_Speed_RR < 0 or Wheel_Speed_RR > 130:
111
+ issues.append("πŸ”΄ **Rear Right Wheel Speed Abnormal** β€” out of expected range (0–130 km/h).")
112
+ ## Fluid_Temperature
113
+ if Fluid_Temperature < -20 or Fluid_Temperature > 120:
114
+ issues.append("πŸ”₯ **Abnormal Brake Fluid Temperature** β€” should be between -20Β°C and 120Β°C. Check for overheating or freezing issues.")
115
+
116
+ # Moderate brake pedal press (between 20 and 60)
117
+ if 20 < Pedal_Position < 60:
118
+ issues.append("🟑 **Moderate Brake Pedal Pressed** β€” normal city or highway braking.")
119
+
120
+ # Hard/full brake press (between 60 and 100)
121
+ if 60 <= Pedal_Position <= 100:
122
+ issues.append("πŸ›‘ **Brake Pedal Fully Pressed** β€” full braking detected. If pressure or wheel speed is abnormal, check for faults.")
123
+
124
+ # Low or no brake engagement
125
+ if Pedal_Position <= 20:
126
+ issues.append("πŸ” **Low Brake Pedal Engagement** β€” either not braking or sensor reading may be inaccurate.")
127
+
128
+
129
+ if len(issues) > 0:
130
+ for issue in issues:
131
+ st.markdown(f"- {issue}")
132
+ else:
133
+ st.info("No specific fault signals from input values, but model still detected an issue. Please consult a technician.")
134
+
135
+ else:
136
+ st.success(f"βœ… No Fault Detected. (Confidence: {1 - prob:.2%})")
137
+ st.info("πŸš— Your vehicle's brake system appears healthy.")
138
+