import streamlit as st import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import streamlit as st import pandas as pd import numpy as np # Load the dataset df = pd.read_csv(r"C:\Users\91879\Downloads\data.csv") st.title("📊 Exploratory Data Analysis") # Fill missing values df.fillna(df.mean(), inplace=True) st.subheader("📄 View Dataset Preview") if st.button("🔍 Show Dataset Head"): st.dataframe(df.head()) features = [ 'Brake_Pressure', 'Pad_Wear_Level', 'ABS_Status', 'Wheel_Speed_FL', 'Wheel_Speed_FR', 'Wheel_Speed_RL', 'Wheel_Speed_RR', 'Fluid_Temperature', 'Pedal_Position' ] st.subheader("⚠️ Fault Distribution") fault_counts = df['Fault'].value_counts() st.bar_chart(fault_counts) st.write(df['Fault'].value_counts(normalize=True) * 100) st.subheader("📊 Correlation Heatmap") corr = df.corr() fig, ax = plt.subplots(figsize=(10, 8)) sns.heatmap(corr, annot=True, fmt=".2f", cmap="coolwarm", ax=ax) st.pyplot(fig)