Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app (1).py +144 -0
- cancer_prediction_data.csv +0 -0
- requirements (2).txt +8 -0
app (1).py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# cancer_prediction_app.py
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
from sklearn.pipeline import Pipeline
|
7 |
+
from sklearn.preprocessing import StandardScaler, OneHotEncoder
|
8 |
+
from sklearn.impute import SimpleImputer
|
9 |
+
from sklearn.compose import ColumnTransformer
|
10 |
+
from sklearn.linear_model import LogisticRegression
|
11 |
+
|
12 |
+
# -----------------------------
|
13 |
+
# Backstory, Problem Statement, Applications
|
14 |
+
# -----------------------------
|
15 |
+
st.title("🧬 Cancer Prediction using Machine Learning")
|
16 |
+
|
17 |
+
st.sidebar.title("About Project")
|
18 |
+
|
19 |
+
st.sidebar.markdown("""
|
20 |
+
**Backstory:**
|
21 |
+
Cancer remains a leading cause of death worldwide. Early prediction and detection play a crucial role in improving survival rates. As data availability has increased, machine learning provides powerful tools to help medical professionals make more accurate predictions.
|
22 |
+
|
23 |
+
**Problem Statement:**
|
24 |
+
Develop a machine learning model that predicts the likelihood of cancer based on patient features. The goal is to assist healthcare providers in making better-informed diagnostic decisions.
|
25 |
+
|
26 |
+
**Applications:**
|
27 |
+
- Early detection and screening support.
|
28 |
+
- Prioritization of high-risk patients.
|
29 |
+
- Resource allocation in healthcare systems.
|
30 |
+
""")
|
31 |
+
|
32 |
+
st.markdown("""
|
33 |
+
This app allows you to manually input all patient features and receive a prediction indicating whether cancer is present or not. The model is built with a robust pipeline combining **imputation**, **scaling**, **encoding**, and **logistic regression**.
|
34 |
+
""")
|
35 |
+
|
36 |
+
# -----------------------------
|
37 |
+
# Load Data
|
38 |
+
# -----------------------------
|
39 |
+
@st.cache_data
|
40 |
+
def load_data():
|
41 |
+
data = pd.read_csv("cancer_prediction_data.csv")
|
42 |
+
return data
|
43 |
+
|
44 |
+
data = load_data()
|
45 |
+
|
46 |
+
st.subheader("Dataset Columns:")
|
47 |
+
st.write(list(data.columns))
|
48 |
+
|
49 |
+
# -----------------------------
|
50 |
+
# Identify Target and Features
|
51 |
+
# -----------------------------
|
52 |
+
TARGET_COLUMN = "Cancer_Present"
|
53 |
+
|
54 |
+
if TARGET_COLUMN not in data.columns:
|
55 |
+
st.error(f"❌ Target column '{TARGET_COLUMN}' not found. Please check dataset columns above.")
|
56 |
+
st.stop()
|
57 |
+
|
58 |
+
X = data.drop(TARGET_COLUMN, axis=1)
|
59 |
+
y = data[TARGET_COLUMN]
|
60 |
+
|
61 |
+
# -----------------------------
|
62 |
+
# Detect categorical and numeric columns
|
63 |
+
# -----------------------------
|
64 |
+
categorical_cols = X.select_dtypes(include=["object", "category"]).columns.tolist()
|
65 |
+
numeric_cols = X.select_dtypes(include=["int64", "float64"]).columns.tolist()
|
66 |
+
|
67 |
+
st.write("Categorical columns detected:", categorical_cols)
|
68 |
+
st.write("Numeric columns detected:", numeric_cols)
|
69 |
+
|
70 |
+
# -----------------------------
|
71 |
+
# Preprocessing pipeline
|
72 |
+
# -----------------------------
|
73 |
+
numeric_pipeline = Pipeline([
|
74 |
+
("imputer", SimpleImputer(strategy="mean")),
|
75 |
+
("scaler", StandardScaler())
|
76 |
+
])
|
77 |
+
|
78 |
+
categorical_pipeline = Pipeline([
|
79 |
+
("imputer", SimpleImputer(strategy="most_frequent")),
|
80 |
+
("encoder", OneHotEncoder(handle_unknown="ignore"))
|
81 |
+
])
|
82 |
+
|
83 |
+
preprocessor = ColumnTransformer([
|
84 |
+
("num", numeric_pipeline, numeric_cols),
|
85 |
+
("cat", categorical_pipeline, categorical_cols)
|
86 |
+
])
|
87 |
+
|
88 |
+
pipeline = Pipeline([
|
89 |
+
("preprocessor", preprocessor),
|
90 |
+
("classifier", LogisticRegression(max_iter=1000))
|
91 |
+
])
|
92 |
+
|
93 |
+
# -----------------------------
|
94 |
+
# Train the pipeline
|
95 |
+
# -----------------------------
|
96 |
+
pipeline.fit(X, y)
|
97 |
+
|
98 |
+
# -----------------------------
|
99 |
+
# Sidebar Inputs for Prediction
|
100 |
+
# -----------------------------
|
101 |
+
st.sidebar.header("Enter Patient Features")
|
102 |
+
|
103 |
+
def user_input_features():
|
104 |
+
input_data = {}
|
105 |
+
# Numeric inputs
|
106 |
+
for col in numeric_cols:
|
107 |
+
val = st.sidebar.number_input(
|
108 |
+
f"{col}",
|
109 |
+
min_value=float(X[col].min()) if not pd.isna(X[col].min()) else 0.0,
|
110 |
+
max_value=float(X[col].max()) if not pd.isna(X[col].max()) else 1.0,
|
111 |
+
value=float(X[col].mean()) if not pd.isna(X[col].mean()) else 0.0
|
112 |
+
)
|
113 |
+
input_data[col] = val
|
114 |
+
# Categorical inputs
|
115 |
+
for col in categorical_cols:
|
116 |
+
val = st.sidebar.selectbox(
|
117 |
+
f"{col}",
|
118 |
+
options=sorted(X[col].dropna().unique())
|
119 |
+
)
|
120 |
+
input_data[col] = val
|
121 |
+
return pd.DataFrame([input_data])
|
122 |
+
|
123 |
+
input_df = user_input_features()
|
124 |
+
|
125 |
+
# -----------------------------
|
126 |
+
# Make Prediction
|
127 |
+
# -----------------------------
|
128 |
+
if st.button("Predict"):
|
129 |
+
prediction = pipeline.predict(input_df)[0]
|
130 |
+
prediction_proba = pipeline.predict_proba(input_df)[0][1]
|
131 |
+
|
132 |
+
st.subheader("Prediction Result")
|
133 |
+
|
134 |
+
if prediction == 1:
|
135 |
+
st.error("⚠️ **Cancer is Present**")
|
136 |
+
else:
|
137 |
+
st.success("✅ **No Cancer**")
|
138 |
+
|
139 |
+
# -----------------------------
|
140 |
+
# Additional Info
|
141 |
+
# -----------------------------
|
142 |
+
|
143 |
+
|
144 |
+
|
cancer_prediction_data.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements (2).txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
altair
|
2 |
+
pandas
|
3 |
+
streamlit
|
4 |
+
streamlit_drawable_canvas
|
5 |
+
joblib
|
6 |
+
pillow
|
7 |
+
opencv-python
|
8 |
+
scikit-learn
|