Spaces:
Sleeping
Sleeping
File size: 1,106 Bytes
400e984 1599a30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import streamlit as st
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
import pandas as pd
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score
df = pd.read_csv("spam.csv")
st.title(":red[Email Spam or Ham Classification]")
x = df["Message"]
y = df["Category"]
ham = df[df["Category"] == "ham"]
bow = CountVectorizer(stop_words = "english")
final_X = pd.DataFrame(bow.fit_transform(x).toarray(), columns = bow.get_feature_names_out())
X_train, X_test, y_train, y_test = train_test_split(final_X, y , test_size= 0.25, random_state = 23)
nav_base = MultinomialNB()
nav_base.fit(X_train, y_train)
y_pred = nav_base.predict(X_test)
res = st.button("predict_score")
if res:
st.write(accuracy_score(y_test,y_pred))
st.snow()
input = st.text_input("enter email")
def fun(email):
data = bow.transform([email]).toarray()
st.write(nav_base.predict(data)[0])
if st.button("predict"):
fun(input)
st.balloons() |