Spaces:
Running
Running
Upload 3 files
Browse files- New_emotions.csv +0 -0
- requirements.txt +4 -0
- ss.py +57 -0
New_emotions.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|
3 |
+
numpy
|
4 |
+
scikit-learn
|
ss.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import streamlit as st
|
3 |
+
import warnings
|
4 |
+
warnings.filterwarnings("ignore")
|
5 |
+
|
6 |
+
from sklearn.model_selection import train_test_split
|
7 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
8 |
+
from sklearn.pipeline import Pipeline
|
9 |
+
from sklearn.naive_bayes import MultinomialNB
|
10 |
+
from sklearn.metrics import accuracy_score
|
11 |
+
|
12 |
+
# Load and clean data
|
13 |
+
df = pd.read_csv(r"C:\Users\91879\Downloads\New_emotions.csv")
|
14 |
+
print(df.columns)
|
15 |
+
|
16 |
+
df.drop_duplicates(inplace=True)
|
17 |
+
|
18 |
+
x = df["sentence"]
|
19 |
+
y = df["emotion"]
|
20 |
+
|
21 |
+
# Split data
|
22 |
+
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=29)
|
23 |
+
|
24 |
+
# Build model
|
25 |
+
model = Pipeline([
|
26 |
+
("vectorizer", CountVectorizer()),
|
27 |
+
("classifier", MultinomialNB(alpha=2))
|
28 |
+
])
|
29 |
+
|
30 |
+
model.fit(x, y)
|
31 |
+
y_predict = model.predict(x_test)
|
32 |
+
|
33 |
+
# Streamlit App
|
34 |
+
st.title("Emotion Detection from Text π")
|
35 |
+
st.write("Model Accuracy:", accuracy_score(y_test, y_predict))
|
36 |
+
|
37 |
+
# User input
|
38 |
+
sentence = st.text_input("Enter a sentence:")
|
39 |
+
|
40 |
+
if st.button("Predict Emotion"):
|
41 |
+
if sentence:
|
42 |
+
prediction = model.predict([sentence])[0]
|
43 |
+
st.write("Predicted Emotion:", prediction)
|
44 |
+
|
45 |
+
# Show emoji
|
46 |
+
emojis = {
|
47 |
+
"sad": "π’π’",
|
48 |
+
"love": "β€οΈβ€οΈ",
|
49 |
+
"surprise": "π¦π¦",
|
50 |
+
"joy": "ππ",
|
51 |
+
"anger": "π π ",
|
52 |
+
"fear": "π¨π¨"
|
53 |
+
}
|
54 |
+
st.write("Emoji:", emojis.get(prediction, "π€"))
|
55 |
+
|
56 |
+
user_data = pd.DataFrame([[sentence, prediction]], columns=["sentence", "predicted_emotion"])
|
57 |
+
st.write(user_data)
|