Spaces:
Sleeping
Sleeping
Update ss.py
Browse files
ss.py
CHANGED
|
@@ -1,57 +1,57 @@
|
|
| 1 |
-
import pandas as pd
|
| 2 |
-
import streamlit as st
|
| 3 |
-
import warnings
|
| 4 |
-
warnings.filterwarnings("ignore")
|
| 5 |
-
|
| 6 |
-
from sklearn.model_selection import train_test_split
|
| 7 |
-
from sklearn.feature_extraction.text import CountVectorizer
|
| 8 |
-
from sklearn.pipeline import Pipeline
|
| 9 |
-
from sklearn.naive_bayes import MultinomialNB
|
| 10 |
-
from sklearn.metrics import accuracy_score
|
| 11 |
-
|
| 12 |
-
# Load and clean data
|
| 13 |
-
df = pd.read_csv(r"
|
| 14 |
-
print(df.columns)
|
| 15 |
-
|
| 16 |
-
df.drop_duplicates(inplace=True)
|
| 17 |
-
|
| 18 |
-
x = df["sentence"]
|
| 19 |
-
y = df["emotion"]
|
| 20 |
-
|
| 21 |
-
# Split data
|
| 22 |
-
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=29)
|
| 23 |
-
|
| 24 |
-
# Build model
|
| 25 |
-
model = Pipeline([
|
| 26 |
-
("vectorizer", CountVectorizer()),
|
| 27 |
-
("classifier", MultinomialNB(alpha=2))
|
| 28 |
-
])
|
| 29 |
-
|
| 30 |
-
model.fit(x, y)
|
| 31 |
-
y_predict = model.predict(x_test)
|
| 32 |
-
|
| 33 |
-
# Streamlit App
|
| 34 |
-
st.title("Emotion Detection from Text π")
|
| 35 |
-
st.write("Model Accuracy:", accuracy_score(y_test, y_predict))
|
| 36 |
-
|
| 37 |
-
# User input
|
| 38 |
-
sentence = st.text_input("Enter a sentence:")
|
| 39 |
-
|
| 40 |
-
if st.button("Predict Emotion"):
|
| 41 |
-
if sentence:
|
| 42 |
-
prediction = model.predict([sentence])[0]
|
| 43 |
-
st.write("Predicted Emotion:", prediction)
|
| 44 |
-
|
| 45 |
-
# Show emoji
|
| 46 |
-
emojis = {
|
| 47 |
-
"sad": "π’π’",
|
| 48 |
-
"love": "β€οΈβ€οΈ",
|
| 49 |
-
"surprise": "π¦π¦",
|
| 50 |
-
"joy": "ππ",
|
| 51 |
-
"anger": "π π ",
|
| 52 |
-
"fear": "π¨π¨"
|
| 53 |
-
}
|
| 54 |
-
st.write("Emoji:", emojis.get(prediction, "π€"))
|
| 55 |
-
|
| 56 |
-
user_data = pd.DataFrame([[sentence, prediction]], columns=["sentence", "predicted_emotion"])
|
| 57 |
-
st.write(user_data)
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import warnings
|
| 4 |
+
warnings.filterwarnings("ignore")
|
| 5 |
+
|
| 6 |
+
from sklearn.model_selection import train_test_split
|
| 7 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
| 8 |
+
from sklearn.pipeline import Pipeline
|
| 9 |
+
from sklearn.naive_bayes import MultinomialNB
|
| 10 |
+
from sklearn.metrics import accuracy_score
|
| 11 |
+
|
| 12 |
+
# Load and clean data
|
| 13 |
+
df = pd.read_csv(r"New_emotions.csv")
|
| 14 |
+
print(df.columns)
|
| 15 |
+
|
| 16 |
+
df.drop_duplicates(inplace=True)
|
| 17 |
+
|
| 18 |
+
x = df["sentence"]
|
| 19 |
+
y = df["emotion"]
|
| 20 |
+
|
| 21 |
+
# Split data
|
| 22 |
+
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=29)
|
| 23 |
+
|
| 24 |
+
# Build model
|
| 25 |
+
model = Pipeline([
|
| 26 |
+
("vectorizer", CountVectorizer()),
|
| 27 |
+
("classifier", MultinomialNB(alpha=2))
|
| 28 |
+
])
|
| 29 |
+
|
| 30 |
+
model.fit(x, y)
|
| 31 |
+
y_predict = model.predict(x_test)
|
| 32 |
+
|
| 33 |
+
# Streamlit App
|
| 34 |
+
st.title("Emotion Detection from Text π")
|
| 35 |
+
st.write("Model Accuracy:", accuracy_score(y_test, y_predict))
|
| 36 |
+
|
| 37 |
+
# User input
|
| 38 |
+
sentence = st.text_input("Enter a sentence:")
|
| 39 |
+
|
| 40 |
+
if st.button("Predict Emotion"):
|
| 41 |
+
if sentence:
|
| 42 |
+
prediction = model.predict([sentence])[0]
|
| 43 |
+
st.write("Predicted Emotion:", prediction)
|
| 44 |
+
|
| 45 |
+
# Show emoji
|
| 46 |
+
emojis = {
|
| 47 |
+
"sad": "π’π’",
|
| 48 |
+
"love": "β€οΈβ€οΈ",
|
| 49 |
+
"surprise": "π¦π¦",
|
| 50 |
+
"joy": "ππ",
|
| 51 |
+
"anger": "π π ",
|
| 52 |
+
"fear": "π¨π¨"
|
| 53 |
+
}
|
| 54 |
+
st.write("Emoji:", emojis.get(prediction, "π€"))
|
| 55 |
+
|
| 56 |
+
user_data = pd.DataFrame([[sentence, prediction]], columns=["sentence", "predicted_emotion"])
|
| 57 |
+
st.write(user_data)
|