Spaces:
Sleeping
Sleeping
File size: 8,432 Bytes
ef56d7f f8fbe08 ef56d7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import os
import joblib
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from tensorflow import keras
# -------------------------
# Streamlit Page Config
# -------------------------
st.set_page_config(page_title="Fertility Prediction", layout="wide")
st.title("๐งฌ Fertility Health Prediction App")
# -------------------------
# Sidebar Navigation
# -------------------------
page = st.sidebar.radio("๐ Navigate", ["๐ EDA", "๐ค Model Training", "๐ฎ Prediction"])
# -------------------------
# Load Data
# -------------------------
@st.cache_data
def load_data():
df=pd.read_csv(r"C:\Users\91879\Downloads\fertility_synthetic_50000\fertility_synthetic_50000.csv")
df.drop_duplicates(inplace=True)
return df
df = load_data()
# -------------------------
# EDA Page
# -------------------------
if page == "๐ EDA":
st.header("๐ Exploratory Data Analysis")
st.subheader("๐ Dataset Overview")
st.write(f"๐๏ธ Shape of dataset: {df.shape}")
col1, col2 = st.columns(2)
with col1:
st.write("๐ First 5 rows:")
st.dataframe(df.head())
with col2:
st.write("๐ Basic statistics:")
st.dataframe(df.describe())
st.subheader("โ Missing Values")
st.write(df.isna().sum())
st.subheader("๐ Data Visualization")
# Target vs Sperm Count
fig, ax = plt.subplots(figsize=(6,4))
sns.barplot(data=df, x='Target_HealthyOffspring',
y='Male_SpermCount_million_per_mL',
estimator=np.mean, ax=ax, palette="viridis")
ax.set_title('๐ฏ Target vs Male Sperm Count (mean)')
st.pyplot(fig)
# Correlation heatmap
st.write("๐ก๏ธ Correlation Heatmap:")
fig, ax = plt.subplots(figsize=(12,10))
sns.heatmap(df.corr(numeric_only=True), annot=False, cmap="coolwarm", ax=ax)
st.pyplot(fig)
# -------------------------
# Model Training Page
# -------------------------
elif page == "๐ค Model Training":
st.header("โ๏ธ Model Training")
# Prepare data
X = df.drop("Target_HealthyOffspring", axis=1)
y = df["Target_HealthyOffspring"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=29)
# Scale data
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Ensure models directory
os.makedirs("models", exist_ok=True)
joblib.dump(scaler, "models/fertility_scaler.pkl")
# Model architecture
model = keras.Sequential([
keras.layers.Input(shape=(X_train.shape[1],)),
keras.layers.Dense(7, activation="relu"),
keras.layers.Dense(5, activation="relu"),
keras.layers.Dense(4, activation="relu"),
keras.layers.Dense(2, activation="softmax")
])
model.compile(loss="sparse_categorical_crossentropy",
optimizer="adam",
metrics=["accuracy"])
# Train model
if st.button("๐ Train Model"):
with st.spinner("โณ Training in progress..."):
history = model.fit(X_train_scaled, y_train, epochs=10, validation_split=0.2, verbose=1)
# Save model
model.save("models/fertility_model.h5")
st.success("โ
Model trained and saved successfully!")
# Plot training history
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
ax1.plot(history.history["accuracy"], label="Training Accuracy", color="green")
ax1.plot(history.history["val_accuracy"], label="Validation Accuracy", color="blue")
ax1.set_title("๐ Accuracy")
ax1.set_xlabel("Epochs")
ax1.set_ylabel("Accuracy")
ax1.legend()
ax2.plot(history.history["loss"], label="Training Loss", color="red")
ax2.plot(history.history["val_loss"], label="Validation Loss", color="orange")
ax2.set_title("๐ Loss")
ax2.set_xlabel("Epochs")
ax2.set_ylabel("Loss")
ax2.legend()
st.pyplot(fig)
# Evaluate on test set
test_loss, test_acc = model.evaluate(X_test_scaled, y_test, verbose=0)
st.metric("๐งช Test Accuracy", f"{test_acc:.4f}")
st.metric("๐ Test Loss", f"{test_loss:.4f}")
# -------------------------
# Prediction Page
# -------------------------
elif page == "๐ฎ Prediction":
st.header("๐ฎ Make a Prediction")
try:
model = keras.models.load_model("models/fertility_model.h5")
scaler = joblib.load("models/fertility_scaler.pkl")
st.success("๐ Model & Scaler loaded successfully!")
except:
st.error("โ Model not found. Please train it first under 'Model Training'.")
st.stop()
# Create input form
with st.form("prediction_form"):
st.subheader("๐งพ Enter Patient Details")
col1, col2 = st.columns(2)
with col1:
st.markdown("**๐จ Male Factors**")
male_sperm_count = st.number_input("Sperm Count (million/mL)", min_value=0.0, value=15.0)
male_sperm_motility = st.number_input("Sperm Motility (%)", min_value=0.0, max_value=100.0, value=40.0)
male_sperm_morphology = st.number_input("Sperm Morphology (%)", min_value=0.0, max_value=100.0, value=4.0)
male_testosterone = st.number_input("Testosterone (ng/dL)", min_value=0.0, value=300.0)
male_fsh = st.number_input("Male FSH (mIU/mL)", min_value=0.0, value=1.5)
with col2:
st.markdown("**๐ฉ Female Factors**")
female_age = st.number_input("Female Age (years)", min_value=18, max_value=50, value=30)
female_ovulation = st.number_input("Ovulation Regularity (days)", min_value=0, value=28)
female_estradiol = st.number_input("Estradiol (pg/mL)", min_value=0.0, value=20.0)
female_progesterone = st.number_input("Progesterone (ng/mL)", min_value=0.0, value=10.0)
female_fsh = st.number_input("Female FSH (mIU/mL)", min_value=0.0, value=3.0)
st.markdown("**๐ Lifestyle Factors**")
col3, col4 = st.columns(2)
with col3:
intercourse_freq = st.number_input("Intercourse Frequency (per week)", min_value=0, value=2)
folic_acid = st.number_input("Folic Acid Intake (mcg/day)", min_value=0, value=400)
with col4:
smoking = st.number_input("Cigarettes per day", min_value=0, value=0)
alcohol = st.number_input("Alcoholic drinks per week", min_value=0, value=0)
hba1c = st.number_input("HbA1c (%)", min_value=0.0, max_value=20.0, value=5.0)
submitted = st.form_submit_button("โจ Predict")
if submitted:
input_data = np.array([[male_sperm_count, male_sperm_motility, male_sperm_morphology,
male_testosterone, male_fsh, female_age, female_ovulation,
female_estradiol, female_progesterone, female_fsh,
intercourse_freq, folic_acid, smoking, alcohol, hba1c]])
scaled_input = scaler.transform(input_data)
prediction = model.predict(scaled_input)
predicted_class = np.argmax(prediction, axis=1)
confidence = np.max(prediction) * 100
st.subheader("๐ Prediction Results")
if predicted_class[0] == 1:
st.success(f"โ
Likely to have healthy offspring (Confidence: {confidence:.2f}%)")
else:
st.error(f"โ Unlikely to have healthy offspring (Confidence: {confidence:.2f}%)")
st.progress(int(confidence))
# Probability distribution
fig, ax = plt.subplots(figsize=(6, 4))
ax.bar(['โ Unlikely (0)', 'โ
Likely (1)'], prediction[0],
color=['crimson', 'seagreen'])
ax.set_title('๐ Prediction Probability Distribution')
ax.set_ylabel('Probability')
st.pyplot(fig)
|