File size: 8,432 Bytes
ef56d7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8fbe08
ef56d7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import os
import joblib
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from tensorflow import keras

# -------------------------
# Streamlit Page Config
# -------------------------
st.set_page_config(page_title="Fertility Prediction", layout="wide")
st.title("๐Ÿงฌ Fertility Health Prediction App")

# -------------------------
# Sidebar Navigation
# -------------------------
page = st.sidebar.radio("๐Ÿ“‚ Navigate", ["๐Ÿ” EDA", "๐Ÿค– Model Training", "๐Ÿ”ฎ Prediction"])

# -------------------------
# Load Data
# -------------------------
@st.cache_data
def load_data():
    df=pd.read_csv(r"C:\Users\91879\Downloads\fertility_synthetic_50000\fertility_synthetic_50000.csv")
    df.drop_duplicates(inplace=True)
    return df

df = load_data()

# -------------------------
# EDA Page
# -------------------------
if page == "๐Ÿ” EDA":
    st.header("๐Ÿ“Š Exploratory Data Analysis")
    
    st.subheader("๐Ÿ“‘ Dataset Overview")
    st.write(f"๐Ÿ—‚๏ธ Shape of dataset: {df.shape}")
    
    col1, col2 = st.columns(2)
    with col1:
        st.write("๐Ÿ‘€ First 5 rows:")
        st.dataframe(df.head())
    with col2:
        st.write("๐Ÿ“ Basic statistics:")
        st.dataframe(df.describe())
    
    st.subheader("โ“ Missing Values")
    st.write(df.isna().sum())
    
    st.subheader("๐Ÿ“ˆ Data Visualization")
    
    # Target vs Sperm Count
    fig, ax = plt.subplots(figsize=(6,4))
    sns.barplot(data=df, x='Target_HealthyOffspring', 
                y='Male_SpermCount_million_per_mL', 
                estimator=np.mean, ax=ax, palette="viridis")
    ax.set_title('๐ŸŽฏ Target vs Male Sperm Count (mean)')
    st.pyplot(fig)
    
    # Correlation heatmap
    st.write("๐ŸŒก๏ธ Correlation Heatmap:")
    fig, ax = plt.subplots(figsize=(12,10))
    sns.heatmap(df.corr(numeric_only=True), annot=False, cmap="coolwarm", ax=ax)
    st.pyplot(fig)

# -------------------------
# Model Training Page
# -------------------------
elif page == "๐Ÿค– Model Training":
    st.header("โš™๏ธ Model Training")
    
    # Prepare data
    X = df.drop("Target_HealthyOffspring", axis=1)
    y = df["Target_HealthyOffspring"]
    
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=29)
    
    # Scale data
    scaler = StandardScaler()
    X_train_scaled = scaler.fit_transform(X_train)
    X_test_scaled = scaler.transform(X_test)
    
    # Ensure models directory
    os.makedirs("models", exist_ok=True)
    joblib.dump(scaler, "models/fertility_scaler.pkl")
    
    # Model architecture
    model = keras.Sequential([
        keras.layers.Input(shape=(X_train.shape[1],)),
        keras.layers.Dense(7, activation="relu"),
        keras.layers.Dense(5, activation="relu"),
        keras.layers.Dense(4, activation="relu"),
        keras.layers.Dense(2, activation="softmax")
    ])
    
    model.compile(loss="sparse_categorical_crossentropy", 
                  optimizer="adam", 
                  metrics=["accuracy"])
    
    # Train model
    if st.button("๐Ÿš€ Train Model"):
        with st.spinner("โณ Training in progress..."):
            history = model.fit(X_train_scaled, y_train, epochs=10, validation_split=0.2, verbose=1)
            
            # Save model
            model.save("models/fertility_model.h5")
            
            st.success("โœ… Model trained and saved successfully!")
            
            # Plot training history
            fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
            ax1.plot(history.history["accuracy"], label="Training Accuracy", color="green")
            ax1.plot(history.history["val_accuracy"], label="Validation Accuracy", color="blue")
            ax1.set_title("๐Ÿ“ˆ Accuracy")
            ax1.set_xlabel("Epochs")
            ax1.set_ylabel("Accuracy")
            ax1.legend()
            
            ax2.plot(history.history["loss"], label="Training Loss", color="red")
            ax2.plot(history.history["val_loss"], label="Validation Loss", color="orange")
            ax2.set_title("๐Ÿ“‰ Loss")
            ax2.set_xlabel("Epochs")
            ax2.set_ylabel("Loss")
            ax2.legend()
            
            st.pyplot(fig)
            
            # Evaluate on test set
            test_loss, test_acc = model.evaluate(X_test_scaled, y_test, verbose=0)
            st.metric("๐Ÿงช Test Accuracy", f"{test_acc:.4f}")
            st.metric("๐Ÿ“‰ Test Loss", f"{test_loss:.4f}")

# -------------------------
# Prediction Page
# -------------------------
elif page == "๐Ÿ”ฎ Prediction":
    st.header("๐Ÿ”ฎ Make a Prediction")
    
    try:
        model = keras.models.load_model("models/fertility_model.h5")
        scaler = joblib.load("models/fertility_scaler.pkl")
        st.success("๐Ÿ“‚ Model & Scaler loaded successfully!")
    except:
        st.error("โŒ Model not found. Please train it first under 'Model Training'.")
        st.stop()
    
    # Create input form
    with st.form("prediction_form"):
        st.subheader("๐Ÿงพ Enter Patient Details")
        
        col1, col2 = st.columns(2)
        with col1:
            st.markdown("**๐Ÿ‘จ Male Factors**")
            male_sperm_count = st.number_input("Sperm Count (million/mL)", min_value=0.0, value=15.0)
            male_sperm_motility = st.number_input("Sperm Motility (%)", min_value=0.0, max_value=100.0, value=40.0)
            male_sperm_morphology = st.number_input("Sperm Morphology (%)", min_value=0.0, max_value=100.0, value=4.0)
            male_testosterone = st.number_input("Testosterone (ng/dL)", min_value=0.0, value=300.0)
            male_fsh = st.number_input("Male FSH (mIU/mL)", min_value=0.0, value=1.5)
        
        with col2:
            st.markdown("**๐Ÿ‘ฉ Female Factors**")
            female_age = st.number_input("Female Age (years)", min_value=18, max_value=50, value=30)
            female_ovulation = st.number_input("Ovulation Regularity (days)", min_value=0, value=28)
            female_estradiol = st.number_input("Estradiol (pg/mL)", min_value=0.0, value=20.0)
            female_progesterone = st.number_input("Progesterone (ng/mL)", min_value=0.0, value=10.0)
            female_fsh = st.number_input("Female FSH (mIU/mL)", min_value=0.0, value=3.0)
        
        st.markdown("**๐Ÿ’š Lifestyle Factors**")
        col3, col4 = st.columns(2)
        with col3:
            intercourse_freq = st.number_input("Intercourse Frequency (per week)", min_value=0, value=2)
            folic_acid = st.number_input("Folic Acid Intake (mcg/day)", min_value=0, value=400)
        with col4:
            smoking = st.number_input("Cigarettes per day", min_value=0, value=0)
            alcohol = st.number_input("Alcoholic drinks per week", min_value=0, value=0)
            hba1c = st.number_input("HbA1c (%)", min_value=0.0, max_value=20.0, value=5.0)
        
        submitted = st.form_submit_button("โœจ Predict")
        
        if submitted:
            input_data = np.array([[male_sperm_count, male_sperm_motility, male_sperm_morphology,
                                    male_testosterone, male_fsh, female_age, female_ovulation,
                                    female_estradiol, female_progesterone, female_fsh,
                                    intercourse_freq, folic_acid, smoking, alcohol, hba1c]])
            
            scaled_input = scaler.transform(input_data)
            prediction = model.predict(scaled_input)
            predicted_class = np.argmax(prediction, axis=1)
            confidence = np.max(prediction) * 100
            
            st.subheader("๐Ÿ“Œ Prediction Results")
            if predicted_class[0] == 1:
                st.success(f"โœ… Likely to have healthy offspring (Confidence: {confidence:.2f}%)")
            else:
                st.error(f"โŒ Unlikely to have healthy offspring (Confidence: {confidence:.2f}%)")
            
            st.progress(int(confidence))
            
            # Probability distribution
            fig, ax = plt.subplots(figsize=(6, 4))
            ax.bar(['โŒ Unlikely (0)', 'โœ… Likely (1)'], prediction[0], 
                   color=['crimson', 'seagreen'])
            ax.set_title('๐Ÿ“Š Prediction Probability Distribution')
            ax.set_ylabel('Probability')
            st.pyplot(fig)