Spaces:
Sleeping
Sleeping
import pickle as pkl | |
import plotly.express as px | |
import gradio as gr | |
from pydantic import BaseModel, Field | |
from typing import List | |
class TechStack(BaseModel): | |
GPU_Frameworks: List[str] = Field(..., alias="GPU Frameworks") | |
Programming_Languages: List[str] = Field(..., alias="Programming Languages") | |
Generative_AI_Frameworks: List[str] = Field(..., alias="Generative AI Frameworks") | |
Databases: List[str] = Field(..., alias="Databases") | |
Orchestration_Deployment: List[str] = Field(..., alias="Orchestration & Deployment") | |
APIs_Web_Frameworks: List[str] = Field(..., alias="APIs & Web Frameworks") | |
Big_Data_Technologies: List[str] = Field(..., alias="Big Data Technologies") | |
Cloud_Platforms_Services: List[str] = Field(..., alias="Cloud Platforms & Services") | |
Machine_Learning_Deep_Learning_Libraries: List[str] = Field(..., alias="Machine Learning & Deep Learning Libraries") | |
Data_Visualization_Tools: List[str] = Field(..., alias="Data Visualization Tools") | |
CI_CD_MLOps: List[str] = Field(..., alias="CI/CD & MLOps") | |
Model_Formats_Optimization: List[str] = Field(..., alias="Model Formats & Optimization") | |
Qualifications: List[str] = Field(..., alias="Qualifications") | |
Machine_Learning_AI_Techniques: List[str] = Field(..., alias="Machine Learning & AI Techniques") | |
Machine_Learning_AI_Models: List[str] = Field(..., alias="Machine Learning & AI Models") | |
Tasks_Responsibilities: List[str] = Field(..., alias="Tasks & Responsibilities") | |
Soft_Skills: List[str] = Field(..., alias="Soft Skills") | |
Miscellaneous: List[str] = Field(..., alias="Miscellaneous") | |
class Config: | |
populate_by_name = True | |
with open("job_stack_count.pkl", "rb") as f: | |
job_stack_count = pkl.load(f) | |
job_stack_count['Generative_AI_Frameworks']['Pydantic'] = 1 | |
job_stack_count['Programming_Languages']['C#'] = 1 | |
# Load the user's stack data | |
with open("all_my_stacks.pkl", "rb") as f: | |
mynew_stacks = pkl.load(f) | |
def generate_treemap(category: str): | |
"""Generate a treemap visualization for the selected category.""" | |
if category not in job_stack_count: | |
return "Category not found" | |
stat_dict = job_stack_count[category] | |
stat_dict_keys = list(stat_dict.keys()) | |
stat_dict_values = list(stat_dict.values()) | |
total = len(mynew_stacks) | |
stat_dict_perc = [val / total * 100 for val in stat_dict_values] | |
hover_text = [f"{label}: Covers {p:.0f}% of Job Descriptions" for label, p in zip(stat_dict_keys, stat_dict_perc)] | |
fig = px.treemap( | |
names=stat_dict_keys, | |
parents=["" for _ in stat_dict_keys], | |
values=stat_dict_values, | |
hover_name=hover_text | |
) | |
fig.update_layout(title=category) | |
return fig | |
# Create a Gradio interface in vertical layout | |
categories = list(job_stack_count.keys()) | |
with gr.Blocks() as demo: | |
gr.Markdown("# Data Science Tech Stack Treemap Visualization") | |
gr.Markdown("Select a category to visualize the distribution of job tech stacks.") | |
with gr.Column(): # Ensures vertical layout | |
category_input = gr.Dropdown(choices=categories, label="Select Category") | |
output_plot = gr.Plot() | |
category_input.change(generate_treemap, inputs=category_input, outputs=output_plot) | |
demo.launch() | |
# Launch the app | |
demo.launch() | |