Spaces:
Sleeping
Sleeping
File size: 1,418 Bytes
a849e4c 8e8d84a a849e4c 8e8d84a a849e4c 8e8d84a a849e4c 485b2b5 8e8d84a a849e4c 8e8d84a a849e4c 8e8d84a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import streamlit as st
import requests
import os
# ✅ 从 Hugging Face Secrets 中读取 API Token
API_TOKEN = os.getenv("HF_API_TOKEN")
# ✅ 设置后端 API 地址
BACKEND_URL = "https://dsbb0707-SpatialParsebackcopy.hf.space/api/predict/"
def call_backend(input_text):
try:
headers = {
"Authorization": f"Bearer {API_TOKEN}"
}
response = requests.post(
BACKEND_URL,
headers=headers,
json={"data": [input_text]},
timeout=10
)
if response.status_code == 200:
result = response.json()["data"][0]
return f"✅ {result['result']}\n⏰ {result['timestamp']}"
return f"❌ Backend Error (HTTP {response.status_code})"
except Exception as e:
return f"⚠️ Connection Error: {str(e)}"
# ✅ Streamlit UI 界面
st.set_page_config(page_title="空间信息前端", page_icon="🧠")
st.title("🌏 空间解析前端")
st.markdown("通过 Hugging Face API 与后端交互")
# ✅ 用户输入
user_input = st.text_input("请输入文本", "")
# ✅ 提交按钮
if st.button("提交"):
if not user_input.strip():
st.warning("请先输入文本。")
else:
with st.spinner("🔄 正在调用后端..."):
result = call_backend(user_input)
st.success("完成!")
st.text_area("后端返回结果", result, height=150)
|