Spaces:
Sleeping
Sleeping
# import streamlit as st | |
# import requests | |
# import os | |
# # ✅ 从 Hugging Face Secrets 中读取 API Token | |
# API_TOKEN = os.getenv("HF_API_TOKEN") | |
# # ✅ 设置后端 API 地址 | |
# # BACKEND_URL = "https://dsbb0707-SpatialParsebackcopy.hf.space/api/predict/" | |
# BACKEND_URL = "https://dsbb0707--dockerb2.hf.space/predict" | |
# def call_backend(input_text): | |
# try: | |
# headers = { | |
# "Authorization": f"Bearer {API_TOKEN}" | |
# } | |
# response = requests.post( | |
# BACKEND_URL, | |
# headers=headers, | |
# json={"data": [input_text]}, | |
# timeout=10 | |
# ) | |
# if response.status_code == 200: | |
# result = response.json()["data"][0] | |
# return f"✅ {result['result']}\n⏰ {result['timestamp']}" | |
# return f"❌ Backend Error (HTTP {response.status_code})" | |
# except Exception as e: | |
# return f"⚠️ Connection Error: {str(e)}" | |
# # ✅ Streamlit UI 界面 | |
# st.set_page_config(page_title="空间信息前端", page_icon="🧠") | |
# st.title("🌏 空间解析前端") | |
# st.markdown("通过 Hugging Face API 与后端交互") | |
# # ✅ 用户输入 | |
# user_input = st.text_input("请输入文本", "") | |
# # ✅ 提交按钮 | |
# if st.button("提交"): | |
# if not user_input.strip(): | |
# st.warning("请先输入文本。") | |
# else: | |
# with st.spinner("🔄 正在调用后端..."): | |
# result = call_backend(user_input) | |
# st.success("完成!") | |
# st.text_area("后端返回结果", result, height=150) | |
import gradio as gr | |
import time # 模拟处理耗时 | |
def process_api(input_text): | |
# 这里编写实际的后端处理逻辑 | |
time.sleep(1) # 模拟处理延迟 | |
return { | |
"status": "success", | |
"result": f"Processed: {input_text.upper()}", | |
"timestamp": time.time() | |
} | |
# 设置API格式为JSON | |
gr.Interface( | |
fn=process_api, | |
inputs="text", | |
outputs="json", | |
title="Backend API", | |
allow_flagging="never" | |
).launch() |