dockerf2 / app.py
Shunfeng Zheng
Update app.py
f017ec1 verified
raw
history blame
2.03 kB
# import streamlit as st
# import requests
# import os
# # ✅ 从 Hugging Face Secrets 中读取 API Token
# API_TOKEN = os.getenv("HF_API_TOKEN")
# # ✅ 设置后端 API 地址
# # BACKEND_URL = "https://dsbb0707-SpatialParsebackcopy.hf.space/api/predict/"
# BACKEND_URL = "https://dsbb0707--dockerb2.hf.space/predict"
# def call_backend(input_text):
# try:
# headers = {
# "Authorization": f"Bearer {API_TOKEN}"
# }
# response = requests.post(
# BACKEND_URL,
# headers=headers,
# json={"data": [input_text]},
# timeout=10
# )
# if response.status_code == 200:
# result = response.json()["data"][0]
# return f"✅ {result['result']}\n⏰ {result['timestamp']}"
# return f"❌ Backend Error (HTTP {response.status_code})"
# except Exception as e:
# return f"⚠️ Connection Error: {str(e)}"
# # ✅ Streamlit UI 界面
# st.set_page_config(page_title="空间信息前端", page_icon="🧠")
# st.title("🌏 空间解析前端")
# st.markdown("通过 Hugging Face API 与后端交互")
# # ✅ 用户输入
# user_input = st.text_input("请输入文本", "")
# # ✅ 提交按钮
# if st.button("提交"):
# if not user_input.strip():
# st.warning("请先输入文本。")
# else:
# with st.spinner("🔄 正在调用后端..."):
# result = call_backend(user_input)
# st.success("完成!")
# st.text_area("后端返回结果", result, height=150)
import gradio as gr
import time # 模拟处理耗时
def process_api(input_text):
# 这里编写实际的后端处理逻辑
time.sleep(1) # 模拟处理延迟
return {
"status": "success",
"result": f"Processed: {input_text.upper()}",
"timestamp": time.time()
}
# 设置API格式为JSON
gr.Interface(
fn=process_api,
inputs="text",
outputs="json",
title="Backend API",
allow_flagging="never"
).launch()