Shunfeng Zheng commited on
Commit
a25d486
·
verified ·
1 Parent(s): ed5edc0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -58
app.py CHANGED
@@ -1,66 +1,66 @@
1
- # import streamlit as st
2
- # import requests
3
- # import os
4
 
5
- # # ✅ 从 Hugging Face Secrets 中读取 API Token
6
- # API_TOKEN = os.getenv("HF_API_TOKEN")
7
 
8
- # # ✅ 设置后端 API 地址
9
- # # BACKEND_URL = "https://dsbb0707-SpatialParsebackcopy.hf.space/api/predict/"
10
- # BACKEND_URL = "https://dsbb0707--dockerb2.hf.space/predict"
11
- # def call_backend(input_text):
12
- # try:
13
- # headers = {
14
- # "Authorization": f"Bearer {API_TOKEN}"
15
- # }
16
- # response = requests.post(
17
- # BACKEND_URL,
18
- # headers=headers,
19
- # json={"data": [input_text]},
20
- # timeout=10
21
- # )
22
- # if response.status_code == 200:
23
- # result = response.json()["data"][0]
24
- # return f"✅ {result['result']}\n⏰ {result['timestamp']}"
25
- # return f"❌ Backend Error (HTTP {response.status_code})"
26
- # except Exception as e:
27
- # return f"⚠️ Connection Error: {str(e)}"
28
 
29
- # # ✅ Streamlit UI 界面
30
- # st.set_page_config(page_title="空间信息前端", page_icon="🧠")
31
- # st.title("🌏 空间解析前端")
32
- # st.markdown("通过 Hugging Face API 与后端交互")
33
 
34
- # # ✅ 用户输入
35
- # user_input = st.text_input("请输入文本", "")
36
 
37
- # # ✅ 提交按钮
38
- # if st.button("提交"):
39
- # if not user_input.strip():
40
- # st.warning("请先输入文本。")
41
- # else:
42
- # with st.spinner("🔄 正在调用后端..."):
43
- # result = call_backend(user_input)
44
- # st.success("完成!")
45
- # st.text_area("后端返回结果", result, height=150)
46
 
47
- import gradio as gr
48
- import time # 模拟处理耗时
49
 
50
- def process_api(input_text):
51
- # 这里编写实际的后端处理逻辑
52
- time.sleep(1) # 模拟处理延迟
53
- return {
54
- "status": "success",
55
- "result": f"Processed: {input_text.upper()}",
56
- "timestamp": time.time()
57
- }
58
 
59
- # 设置API格式为JSON
60
- gr.Interface(
61
- fn=process_api,
62
- inputs="text",
63
- outputs="json",
64
- title="Backend API",
65
- allow_flagging="never"
66
- ).launch()
 
1
+ import streamlit as st
2
+ import requests
3
+ import os
4
 
5
+ # ✅ 从 Hugging Face Secrets 中读取 API Token
6
+ API_TOKEN = os.getenv("HF_API_TOKEN")
7
 
8
+ # ✅ 设置后端 API 地址
9
+ # BACKEND_URL = "https://dsbb0707-SpatialParsebackcopy.hf.space/api/predict/"
10
+ BACKEND_URL = "https://dsbb0707--dockerb2.hf.space/predict"
11
+ def call_backend(input_text):
12
+ try:
13
+ headers = {
14
+ "Authorization": f"Bearer {API_TOKEN}"
15
+ }
16
+ response = requests.post(
17
+ BACKEND_URL,
18
+ headers=headers,
19
+ json={"data": [input_text]},
20
+ timeout=10
21
+ )
22
+ if response.status_code == 200:
23
+ result = response.json()["data"][0]
24
+ return f"✅ {result['result']}\n⏰ {result['timestamp']}"
25
+ return f"❌ Backend Error (HTTP {response.status_code})"
26
+ except Exception as e:
27
+ return f"⚠️ Connection Error: {str(e)}"
28
 
29
+ # ✅ Streamlit UI 界面
30
+ st.set_page_config(page_title="空间信息前端", page_icon="🧠")
31
+ st.title("🌏 空间解析前端")
32
+ st.markdown("通过 Hugging Face API 与后端交互")
33
 
34
+ # ✅ 用户输入
35
+ user_input = st.text_input("请输入文本", "")
36
 
37
+ # ✅ 提交按钮
38
+ if st.button("提交"):
39
+ if not user_input.strip():
40
+ st.warning("请先输入文本。")
41
+ else:
42
+ with st.spinner("🔄 正在调用后端..."):
43
+ result = call_backend(user_input)
44
+ st.success("完成!")
45
+ st.text_area("后端返回结果", result, height=150)
46
 
47
+ # import gradio as gr
48
+ # import time # 模拟处理耗时
49
 
50
+ # def process_api(input_text):
51
+ # # 这里编写实际的后端处理逻辑
52
+ # time.sleep(1) # 模拟处理延迟
53
+ # return {
54
+ # "status": "success",
55
+ # "result": f"Processed: {input_text.upper()}",
56
+ # "timestamp": time.time()
57
+ # }
58
 
59
+ # # 设置API格式为JSON
60
+ # gr.Interface(
61
+ # fn=process_api,
62
+ # inputs="text",
63
+ # outputs="json",
64
+ # title="Backend API",
65
+ # allow_flagging="never"
66
+ # ).launch()