File size: 83,135 Bytes
fe14823 071390e fe14823 071390e fe14823 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 |
# -*- coding: utf-8 -*-
"""
End-to-End Automated MLOps Framework
Author: Spencer Purdy
Description: Enterprise-grade MLOps platform with automated model training, versioning,
drift detection, A/B testing, and deployment capabilities
Features: Custom model training, automatic retraining, model versioning, drift detection,
A/B testing, model cards, performance monitoring, cost tracking, HuggingFace deployment
"""
# Installation
# !pip install -q numpy pandas scikit-learn torch matplotlib seaborn plotly mlflow optuna shap imbalanced-learn yellowbrick jsonschema pyyaml huggingface-hub safetensors accelerate wandb evidently alibi-detect prometheus-client joblib requests Pillow python-dotenv gradio scipy
import os
import json
import yaml
import time
import hashlib
import pickle
import shutil
import logging
import warnings
import requests
import sqlite3
import threading
from datetime import datetime, timedelta
from typing import List, Dict, Tuple, Optional, Any, Union
from dataclasses import dataclass, field, asdict
from collections import defaultdict, deque
from pathlib import Path
import tempfile
from abc import ABC, abstractmethod
from contextlib import contextmanager
# Data processing and ML
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split, cross_val_score, StratifiedKFold
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.metrics import (
accuracy_score, precision_score, recall_score, f1_score,
roc_auc_score, confusion_matrix, classification_report,
mean_squared_error, mean_absolute_error, r2_score
)
from sklearn.ensemble import IsolationForest
from sklearn.decomposition import PCA
from sklearn.datasets import make_classification
from imblearn.over_sampling import SMOTE
# Deep Learning
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader, TensorDataset
# Visualization
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
# MLOps tools
import mlflow
import mlflow.pytorch
import optuna
import shap
# Drift detection imports
try:
from evidently import ColumnMapping
from evidently.report import Report
from evidently.metrics import DataDriftTable, DataQualityMetric
EVIDENTLY_AVAILABLE = True
except ImportError:
print("Warning: Evidently imports failed. Using fallback drift detection.")
EVIDENTLY_AVAILABLE = False
Report = None
DataDriftTable = None
DataQualityMetric = None
try:
from alibi_detect.cd import TabularDrift
ALIBI_AVAILABLE = True
except ImportError:
print("Warning: Alibi-detect imports failed. Using fallback drift detection.")
ALIBI_AVAILABLE = False
TabularDrift = None
# Hugging Face imports
from huggingface_hub import HfApi, create_repo, upload_file
# UI and utilities
import gradio as gr
from prometheus_client import Counter, Gauge, Histogram, generate_latest
import joblib
from concurrent.futures import ThreadPoolExecutor, as_completed
import asyncio
# Configure logging
warnings.filterwarnings('ignore')
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# System Configuration
@dataclass
class MLOpsConfig:
"""Configuration for the MLOps system"""
# Model settings
model_name: str = "customer_churn_predictor"
model_version: str = "1.0.0"
task_type: str = "binary_classification"
# Training settings
batch_size: int = 32
epochs: int = 50
learning_rate: float = 0.001
early_stopping_patience: int = 10
validation_split: float = 0.2
# MLOps settings
experiment_tracking: bool = True
model_registry: bool = True
drift_detection_threshold: float = 0.05
retraining_threshold: float = 0.1
auto_retrain_enabled: bool = True
auto_retrain_interval_hours: int = 24
# Performance thresholds
min_accuracy: float = 0.85
max_latency_ms: float = 100
# Cost tracking
training_cost_per_hour: float = 0.50
inference_cost_per_1k: float = 0.01
storage_cost_per_gb_month: float = 0.10
# Versioning
version_control_backend: str = "local"
model_registry_uri: str = "./model_registry"
# A/B Testing
ab_test_traffic_split: float = 0.5
ab_test_min_samples: int = 100
ab_test_confidence_level: float = 0.95
# Monitoring
monitoring_window_size: int = 1000
alert_email: Optional[str] = None
alert_threshold_consecutive_failures: int = 5
# Paths
data_path: str = "./data"
models_path: str = "./models"
reports_path: str = "./reports"
db_path: str = "./mlops.db"
# Feature settings
input_features: List[str] = field(default_factory=lambda: [
'feature_1', 'feature_2', 'feature_3', 'feature_4', 'feature_5',
'feature_6', 'feature_7', 'feature_8', 'feature_9', 'feature_10'
])
target_column: str = 'target'
config = MLOpsConfig()
# Create necessary directories
for path in [config.data_path, config.models_path, config.reports_path]:
os.makedirs(path, exist_ok=True)
# Initialize MLflow
if config.experiment_tracking:
mlflow.set_tracking_uri(config.model_registry_uri)
mlflow.set_experiment(config.model_name)
# Metrics for monitoring
prediction_counter = Counter('model_predictions_total', 'Total predictions made')
prediction_latency = Histogram('model_prediction_duration_seconds', 'Prediction latency')
model_accuracy_gauge = Gauge('model_accuracy', 'Current model accuracy')
drift_score_gauge = Gauge('model_drift_score', 'Current drift score')
training_duration_gauge = Gauge('model_training_duration_seconds', 'Last training duration')
model_size_gauge = Gauge('model_size_bytes', 'Model size in bytes')
class DatabaseManager:
"""Manages persistent storage for MLOps system with connection pooling"""
def __init__(self, db_path: str, pool_size: int = 5):
self.db_path = db_path
self.pool_size = pool_size
self._local = threading.local()
self.init_database()
@contextmanager
def get_connection(self):
"""Get a database connection with context management"""
if not hasattr(self._local, 'connection') or self._local.connection is None:
self._local.connection = sqlite3.connect(self.db_path, check_same_thread=False)
self._local.connection.row_factory = sqlite3.Row
try:
yield self._local.connection
except Exception as e:
self._local.connection.rollback()
raise e
else:
self._local.connection.commit()
def init_database(self):
"""Initialize database tables"""
with self.get_connection() as conn:
cursor = conn.cursor()
# Model registry table
cursor.execute('''
CREATE TABLE IF NOT EXISTS model_registry (
version_id TEXT PRIMARY KEY,
model_path TEXT,
metrics TEXT,
metadata TEXT,
created_at TIMESTAMP,
is_production BOOLEAN DEFAULT FALSE,
model_size_bytes INTEGER,
training_duration_seconds REAL
)
''')
# Cost tracking table
cursor.execute('''
CREATE TABLE IF NOT EXISTS cost_tracking (
id INTEGER PRIMARY KEY AUTOINCREMENT,
category TEXT,
amount REAL,
timestamp TIMESTAMP,
details TEXT,
model_version TEXT
)
''')
# Performance metrics table
cursor.execute('''
CREATE TABLE IF NOT EXISTS performance_metrics (
id INTEGER PRIMARY KEY AUTOINCREMENT,
model_version TEXT,
metric_name TEXT,
metric_value REAL,
timestamp TIMESTAMP,
prediction_count INTEGER
)
''')
# A/B test results table
cursor.execute('''
CREATE TABLE IF NOT EXISTS ab_test_results (
experiment_id TEXT PRIMARY KEY,
model_a_version TEXT,
model_b_version TEXT,
model_a_performance REAL,
model_b_performance REAL,
winner TEXT,
confidence_level REAL,
sample_size INTEGER,
results TEXT,
created_at TIMESTAMP,
completed_at TIMESTAMP
)
''')
# Drift detection logs table
cursor.execute('''
CREATE TABLE IF NOT EXISTS drift_logs (
id INTEGER PRIMARY KEY AUTOINCREMENT,
model_version TEXT,
drift_type TEXT,
drift_score REAL,
is_drift BOOLEAN,
feature_drifts TEXT,
timestamp TIMESTAMP
)
''')
# Prediction logs table
cursor.execute('''
CREATE TABLE IF NOT EXISTS prediction_logs (
id INTEGER PRIMARY KEY AUTOINCREMENT,
model_version TEXT,
input_features TEXT,
prediction REAL,
confidence REAL,
latency_ms REAL,
timestamp TIMESTAMP
)
''')
# Training history table
cursor.execute('''
CREATE TABLE IF NOT EXISTS training_history (
id INTEGER PRIMARY KEY AUTOINCREMENT,
model_version TEXT,
dataset_hash TEXT,
hyperparameters TEXT,
final_metrics TEXT,
training_curves TEXT,
timestamp TIMESTAMP
)
''')
def execute_query(self, query: str, params: Tuple = None) -> List:
"""Execute a query and return results"""
with self.get_connection() as conn:
cursor = conn.cursor()
if params:
cursor.execute(query, params)
else:
cursor.execute(query)
return cursor.fetchall()
def insert_record(self, table: str, data: Dict) -> int:
"""Insert a record into specified table and return last row id"""
with self.get_connection() as conn:
cursor = conn.cursor()
columns = ', '.join(data.keys())
placeholders = ', '.join(['?' for _ in data])
query = f"INSERT INTO {table} ({columns}) VALUES ({placeholders})"
cursor.execute(query, tuple(data.values()))
return cursor.lastrowid
def update_record(self, table: str, data: Dict, condition: str, params: Tuple) -> None:
"""Update records in specified table"""
with self.get_connection() as conn:
cursor = conn.cursor()
set_clause = ', '.join([f"{k} = ?" for k in data.keys()])
query = f"UPDATE {table} SET {set_clause} WHERE {condition}"
cursor.execute(query, tuple(data.values()) + params)
class CustomDataset(Dataset):
"""Custom PyTorch dataset for tabular data"""
def __init__(self, features: np.ndarray, labels: np.ndarray,
transform=None, feature_names: List[str] = None):
self.features = torch.FloatTensor(features)
self.labels = torch.FloatTensor(labels)
self.transform = transform
self.feature_names = feature_names or [f"feature_{i}" for i in range(features.shape[1])]
def __len__(self):
return len(self.labels)
def __getitem__(self, idx):
features = self.features[idx]
label = self.labels[idx]
if self.transform:
features = self.transform(features)
return features, label
class CustomNeuralNetwork(nn.Module):
"""Custom neural network architecture for tabular data"""
def __init__(self, input_dim: int, hidden_dims: List[int] = None,
output_dim: int = 1, dropout_rate: float = 0.3):
super(CustomNeuralNetwork, self).__init__()
if hidden_dims is None:
hidden_dims = [128, 64, 32]
self.input_dim = input_dim
self.output_dim = output_dim
layers = []
prev_dim = input_dim
# Build hidden layers with batch normalization and dropout
for hidden_dim in hidden_dims:
layers.extend([
nn.Linear(prev_dim, hidden_dim),
nn.BatchNorm1d(hidden_dim),
nn.ReLU(),
nn.Dropout(dropout_rate)
])
prev_dim = hidden_dim
# Output layer
layers.append(nn.Linear(prev_dim, output_dim))
if output_dim == 1: # Binary classification
layers.append(nn.Sigmoid())
self.model = nn.Sequential(*layers)
def forward(self, x):
return self.model(x)
def predict_proba(self, x):
"""Get prediction probabilities"""
self.eval()
with torch.no_grad():
if isinstance(x, np.ndarray):
x = torch.FloatTensor(x)
output = self.forward(x)
if self.output_dim == 1:
# Binary classification
proba = torch.cat([1 - output, output], dim=1)
else:
proba = torch.softmax(output, dim=1)
return proba.numpy()
class ModelVersion:
"""Represents a model version with associated metadata"""
def __init__(self, version_id: str, model: Any, metrics: Dict[str, float],
metadata: Dict[str, Any], model_path: str = None):
self.version_id = version_id
self.model = model
self.metrics = metrics
self.metadata = metadata
self.model_path = model_path
self.created_at = datetime.now()
self.deployment_count = 0
self.last_prediction_time = None
self.prediction_count = 0
def to_dict(self) -> Dict[str, Any]:
"""Convert model version to dictionary for persistence"""
return {
'version_id': self.version_id,
'metrics': self.metrics,
'metadata': self.metadata,
'created_at': self.created_at.isoformat(),
'deployment_count': self.deployment_count,
'prediction_count': self.prediction_count,
'model_path': self.model_path
}
class ModelRegistry:
"""Model registry with persistent storage and versioning"""
def __init__(self, base_path: str = "./model_registry", db_manager: DatabaseManager = None):
self.base_path = Path(base_path)
self.base_path.mkdir(exist_ok=True)
self.db_manager = db_manager or DatabaseManager(config.db_path)
self.versions = {}
self.current_version = None
self.load_registry()
def register_model(self, model: Any, metrics: Dict[str, float],
metadata: Dict[str, Any], training_duration: float = 0) -> str:
"""Register a new model version with persistent storage"""
version_id = self._generate_version_id()
# Save model to disk
model_path = self.base_path / f"model_{version_id}.pkl"
if hasattr(model, 'state_dict'):
torch.save({
'state_dict': model.state_dict(),
'model_config': {
'input_dim': model.input_dim if hasattr(model, 'input_dim') else None,
'output_dim': model.output_dim if hasattr(model, 'output_dim') else None
}
}, model_path)
else:
joblib.dump(model, model_path)
# Calculate model size
model_size = os.path.getsize(model_path)
# Create version object
version = ModelVersion(version_id, model, metrics, metadata, str(model_path))
# Save metadata to disk
metadata_path = self.base_path / f"metadata_{version_id}.json"
with open(metadata_path, 'w') as f:
json.dump(version.to_dict(), f, indent=2)
# Save to database
self.db_manager.insert_record('model_registry', {
'version_id': version_id,
'model_path': str(model_path),
'metrics': json.dumps(metrics),
'metadata': json.dumps(metadata),
'created_at': datetime.now(),
'is_production': False,
'model_size_bytes': model_size,
'training_duration_seconds': training_duration
})
self.versions[version_id] = version
logger.info(f"Registered model version: {version_id}")
# Update metrics
model_size_gauge.set(model_size)
return version_id
def _generate_version_id(self) -> str:
"""Generate unique version identifier"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
return f"v_{timestamp}_{len(self.versions) + 1}"
def get_model(self, version_id: str = None) -> Optional[ModelVersion]:
"""Retrieve a specific model version"""
if version_id is None:
version_id = self.current_version
if version_id and version_id not in self.versions:
# Try loading from database
results = self.db_manager.execute_query(
"SELECT * FROM model_registry WHERE version_id = ?",
(version_id,)
)
if results:
self._load_model_from_db(results[0])
return self.versions.get(version_id)
def promote_model(self, version_id: str) -> None:
"""Promote a model version to production"""
if version_id in self.versions:
# Update database to mark as production
self.db_manager.execute_query(
"UPDATE model_registry SET is_production = FALSE WHERE is_production = TRUE"
)
self.db_manager.update_record(
'model_registry',
{'is_production': True},
'version_id = ?',
(version_id,)
)
self.current_version = version_id
self.versions[version_id].deployment_count += 1
logger.info(f"Promoted model version {version_id} to production")
def load_registry(self) -> None:
"""Load registry state from database"""
results = self.db_manager.execute_query(
"SELECT * FROM model_registry ORDER BY created_at DESC"
)
for row in results:
self._load_model_from_db(row)
# Find current production model
prod_results = self.db_manager.execute_query(
"SELECT version_id FROM model_registry WHERE is_production = TRUE"
)
if prod_results:
self.current_version = prod_results[0][0]
def _load_model_from_db(self, row: Tuple) -> None:
"""Load model information from database row"""
version_id = row[0]
model_path = row[1]
metrics = json.loads(row[2])
metadata = json.loads(row[3])
# Load model from disk
model = None
if os.path.exists(model_path):
if model_path.endswith('.pkl'):
try:
checkpoint = torch.load(model_path, map_location='cpu')
if isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
# PyTorch model
model_config = checkpoint.get('model_config', {})
model = CustomNeuralNetwork(
input_dim=model_config.get('input_dim', 10),
output_dim=model_config.get('output_dim', 1)
)
model.load_state_dict(checkpoint['state_dict'])
else:
model = joblib.load(model_path)
except:
model = joblib.load(model_path)
# Create ModelVersion object
version = ModelVersion(version_id, model, metrics, metadata, model_path)
version.created_at = datetime.fromisoformat(str(row[4]))
self.versions[version_id] = version
class DriftDetector:
"""Handles data drift detection using multiple methods"""
def __init__(self, reference_data: np.ndarray, config: MLOpsConfig,
feature_names: List[str] = None):
self.reference_data = reference_data
self.config = config
self.feature_names = feature_names or [f"feature_{i}" for i in range(reference_data.shape[1])]
self.drift_threshold = config.drift_detection_threshold
# Initialize drift detectors based on availability
self.detectors = self._initialize_detectors()
def _initialize_detectors(self) -> Dict[str, Any]:
"""Initialize available drift detectors"""
detectors = {}
# Statistical drift detector (always available)
detectors['statistical'] = self._create_statistical_detector()
# Alibi-detect drift detector
if ALIBI_AVAILABLE and TabularDrift is not None:
try:
detectors['alibi'] = TabularDrift(
self.reference_data,
p_val=self.drift_threshold,
categories_per_feature={}
)
except Exception as e:
logger.warning(f"Failed to initialize Alibi drift detector: {e}")
return detectors
def _create_statistical_detector(self):
"""Create a simple statistical drift detector"""
return {
'mean': np.mean(self.reference_data, axis=0),
'std': np.std(self.reference_data, axis=0),
'min': np.min(self.reference_data, axis=0),
'max': np.max(self.reference_data, axis=0)
}
def detect_drift(self, current_data: np.ndarray) -> Dict[str, Any]:
"""Detect drift in current data compared to reference data"""
results = {
'is_drift': False,
'drift_score': 0.0,
'feature_drifts': {},
'method': 'statistical'
}
# Try Alibi-detect first if available
if 'alibi' in self.detectors:
try:
drift_pred = self.detectors['alibi'].predict(current_data)
results['is_drift'] = bool(drift_pred['data']['is_drift'])
results['drift_score'] = float(drift_pred['data']['p_val'])
results['method'] = 'alibi'
# Feature-level drift
if 'feature_score' in drift_pred['data']:
for i, score in enumerate(drift_pred['data']['feature_score']):
results['feature_drifts'][self.feature_names[i]] = float(score)
return results
except Exception as e:
logger.warning(f"Alibi drift detection failed: {e}")
# Fallback to statistical drift detection
current_mean = np.mean(current_data, axis=0)
current_std = np.std(current_data, axis=0)
# Calculate normalized differences
mean_diff = np.abs(current_mean - self.detectors['statistical']['mean'])
mean_diff_normalized = mean_diff / (self.detectors['statistical']['std'] + 1e-7)
# Overall drift score (mean of normalized differences)
drift_score = np.mean(mean_diff_normalized)
results['drift_score'] = float(drift_score)
results['is_drift'] = drift_score > self.drift_threshold
# Feature-level drift
for i, feature_name in enumerate(self.feature_names):
results['feature_drifts'][feature_name] = float(mean_diff_normalized[i])
return results
def generate_drift_report(self, current_data: np.ndarray) -> str:
"""Generate a detailed drift report"""
drift_results = self.detect_drift(current_data)
report = f"Data Drift Report\n"
report += f"{'=' * 50}\n"
report += f"Overall Drift Detected: {drift_results['is_drift']}\n"
report += f"Drift Score: {drift_results['drift_score']:.4f}\n"
report += f"Detection Method: {drift_results['method']}\n\n"
report += f"Feature-level Drift Scores:\n"
report += f"{'-' * 30}\n"
for feature, score in drift_results['feature_drifts'].items():
status = "DRIFT" if score > self.drift_threshold else "OK"
report += f"{feature}: {score:.4f} [{status}]\n"
return report
class CostTracker:
"""Tracks and manages costs for the MLOps system"""
def __init__(self, config: MLOpsConfig, db_manager: DatabaseManager):
self.config = config
self.db_manager = db_manager
self.current_costs = defaultdict(float)
def track_training_cost(self, duration_seconds: float, model_version: str) -> float:
"""Track training costs"""
hours = duration_seconds / 3600
cost = hours * self.config.training_cost_per_hour
self.db_manager.insert_record('cost_tracking', {
'category': 'training',
'amount': cost,
'timestamp': datetime.now(),
'details': f'Training duration: {duration_seconds:.2f}s',
'model_version': model_version
})
self.current_costs['training'] += cost
return cost
def track_inference_cost(self, num_predictions: int, model_version: str) -> float:
"""Track inference costs"""
cost = (num_predictions / 1000) * self.config.inference_cost_per_1k
self.db_manager.insert_record('cost_tracking', {
'category': 'inference',
'amount': cost,
'timestamp': datetime.now(),
'details': f'Predictions: {num_predictions}',
'model_version': model_version
})
self.current_costs['inference'] += cost
return cost
def track_storage_cost(self, size_gb: float, model_version: str) -> float:
"""Track storage costs"""
cost = size_gb * self.config.storage_cost_per_gb_month
self.db_manager.insert_record('cost_tracking', {
'category': 'storage',
'amount': cost,
'timestamp': datetime.now(),
'details': f'Storage: {size_gb:.2f}GB',
'model_version': model_version
})
self.current_costs['storage'] += cost
return cost
def get_cost_report(self, days: int = 30) -> Dict[str, Any]:
"""Generate cost report for the specified period"""
start_date = datetime.now() - timedelta(days=days)
query = """
SELECT category, SUM(amount) as total, COUNT(*) as count
FROM cost_tracking
WHERE timestamp > ?
GROUP BY category
"""
results = self.db_manager.execute_query(query, (start_date,))
report = {
'period_days': days,
'categories': {},
'total': 0
}
for row in results:
category = row[0]
total = row[1]
count = row[2]
report['categories'][category] = {
'total': total,
'count': count,
'average': total / count if count > 0 else 0
}
report['total'] += total
return report
class ABTestManager:
"""Manages A/B testing for model comparisons"""
def __init__(self, config: MLOpsConfig, db_manager: DatabaseManager):
self.config = config
self.db_manager = db_manager
self.active_experiments = {}
def create_experiment(self, model_a_version: str, model_b_version: str,
experiment_name: str = None) -> str:
"""Create a new A/B test experiment"""
experiment_id = f"exp_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
if experiment_name:
experiment_id = f"{experiment_id}_{experiment_name}"
experiment = {
'experiment_id': experiment_id,
'model_a_version': model_a_version,
'model_b_version': model_b_version,
'model_a_performance': [],
'model_b_performance': [],
'model_a_count': 0,
'model_b_count': 0,
'created_at': datetime.now(),
'completed': False
}
self.active_experiments[experiment_id] = experiment
# Save to database
self.db_manager.insert_record('ab_test_results', {
'experiment_id': experiment_id,
'model_a_version': model_a_version,
'model_b_version': model_b_version,
'model_a_performance': 0,
'model_b_performance': 0,
'winner': None,
'confidence_level': 0,
'sample_size': 0,
'results': json.dumps({}),
'created_at': datetime.now(),
'completed_at': None
})
logger.info(f"Created A/B test experiment: {experiment_id}")
return experiment_id
def route_request(self, experiment_id: str) -> str:
"""Route request to model A or B based on traffic split"""
if experiment_id not in self.active_experiments:
raise ValueError(f"Experiment {experiment_id} not found")
experiment = self.active_experiments[experiment_id]
# Route based on traffic split
if np.random.random() < self.config.ab_test_traffic_split:
return experiment['model_a_version']
else:
return experiment['model_b_version']
def record_performance(self, experiment_id: str, model_version: str,
performance_metric: float) -> None:
"""Record performance metric for a model in the experiment"""
if experiment_id not in self.active_experiments:
return
experiment = self.active_experiments[experiment_id]
if model_version == experiment['model_a_version']:
experiment['model_a_performance'].append(performance_metric)
experiment['model_a_count'] += 1
elif model_version == experiment['model_b_version']:
experiment['model_b_performance'].append(performance_metric)
experiment['model_b_count'] += 1
# Check if we have enough samples to conclude
if (experiment['model_a_count'] >= self.config.ab_test_min_samples and
experiment['model_b_count'] >= self.config.ab_test_min_samples):
self._analyze_experiment(experiment_id)
def _analyze_experiment(self, experiment_id: str) -> Dict[str, Any]:
"""Analyze A/B test results and determine winner"""
experiment = self.active_experiments[experiment_id]
# Calculate statistics
a_performance = np.array(experiment['model_a_performance'])
b_performance = np.array(experiment['model_b_performance'])
a_mean = np.mean(a_performance)
b_mean = np.mean(b_performance)
a_std = np.std(a_performance)
b_std = np.std(b_performance)
# Perform t-test
from scipy import stats
t_stat, p_value = stats.ttest_ind(a_performance, b_performance)
# Determine winner
winner = None
if p_value < (1 - self.config.ab_test_confidence_level):
winner = experiment['model_a_version'] if a_mean > b_mean else experiment['model_b_version']
results = {
'model_a_mean': float(a_mean),
'model_b_mean': float(b_mean),
'model_a_std': float(a_std),
'model_b_std': float(b_std),
't_statistic': float(t_stat),
'p_value': float(p_value),
'winner': winner,
'confidence_level': self.config.ab_test_confidence_level,
'sample_size_a': experiment['model_a_count'],
'sample_size_b': experiment['model_b_count']
}
# Update database
self.db_manager.update_record(
'ab_test_results',
{
'model_a_performance': float(a_mean),
'model_b_performance': float(b_mean),
'winner': winner,
'confidence_level': self.config.ab_test_confidence_level,
'sample_size': experiment['model_a_count'] + experiment['model_b_count'],
'results': json.dumps(results),
'completed_at': datetime.now()
},
'experiment_id = ?',
(experiment_id,)
)
experiment['completed'] = True
logger.info(f"A/B test {experiment_id} completed. Winner: {winner}")
return results
def get_experiment_status(self, experiment_id: str) -> Dict[str, Any]:
"""Get current status of an A/B test experiment"""
if experiment_id in self.active_experiments:
experiment = self.active_experiments[experiment_id]
return {
'experiment_id': experiment_id,
'model_a_version': experiment['model_a_version'],
'model_b_version': experiment['model_b_version'],
'model_a_count': experiment['model_a_count'],
'model_b_count': experiment['model_b_count'],
'completed': experiment['completed'],
'created_at': experiment['created_at'].isoformat()
}
# Try loading from database
results = self.db_manager.execute_query(
"SELECT * FROM ab_test_results WHERE experiment_id = ?",
(experiment_id,)
)
if results:
row = results[0]
return {
'experiment_id': row[0],
'model_a_version': row[1],
'model_b_version': row[2],
'results': json.loads(row[8]) if row[8] else {},
'completed': row[10] is not None
}
return None
class ModelTrainer:
"""Handles model training with hyperparameter optimization"""
def __init__(self, config: MLOpsConfig):
self.config = config
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logger.info(f"Using device: {self.device}")
def train_model(self, X_train: np.ndarray, y_train: np.ndarray,
X_val: np.ndarray = None, y_val: np.ndarray = None,
optimize_hyperparameters: bool = True) -> Tuple[Any, Dict[str, float], float]:
"""Train a model with optional hyperparameter optimization"""
start_time = time.time()
# Split validation set if not provided
if X_val is None or y_val is None:
X_train, X_val, y_train, y_val = train_test_split(
X_train, y_train, test_size=self.config.validation_split,
random_state=42, stratify=y_train
)
# Optimize hyperparameters if requested
if optimize_hyperparameters:
best_params = self._optimize_hyperparameters(X_train, y_train, X_val, y_val)
else:
best_params = {
'hidden_dims': [128, 64, 32],
'learning_rate': self.config.learning_rate,
'batch_size': self.config.batch_size,
'dropout_rate': 0.3
}
# Create model with best parameters
model = CustomNeuralNetwork(
input_dim=X_train.shape[1],
hidden_dims=best_params['hidden_dims'],
output_dim=1,
dropout_rate=best_params['dropout_rate']
).to(self.device)
# Create data loaders
train_dataset = CustomDataset(X_train, y_train)
val_dataset = CustomDataset(X_val, y_val)
train_loader = DataLoader(
train_dataset,
batch_size=best_params['batch_size'],
shuffle=True
)
val_loader = DataLoader(
val_dataset,
batch_size=best_params['batch_size'],
shuffle=False
)
# Training setup
criterion = nn.BCELoss()
optimizer = optim.Adam(model.parameters(), lr=best_params['learning_rate'])
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
optimizer, mode='min', patience=5, factor=0.5
)
# Training loop
best_val_loss = float('inf')
patience_counter = 0
training_history = []
for epoch in range(self.config.epochs):
# Training phase
model.train()
train_loss = 0.0
train_correct = 0
train_total = 0
for batch_features, batch_labels in train_loader:
batch_features = batch_features.to(self.device)
batch_labels = batch_labels.to(self.device)
optimizer.zero_grad()
outputs = model(batch_features).squeeze()
loss = criterion(outputs, batch_labels)
loss.backward()
optimizer.step()
train_loss += loss.item()
predictions = (outputs > 0.5).float()
train_correct += (predictions == batch_labels).sum().item()
train_total += batch_labels.size(0)
# Validation phase
model.eval()
val_loss = 0.0
val_correct = 0
val_total = 0
with torch.no_grad():
for batch_features, batch_labels in val_loader:
batch_features = batch_features.to(self.device)
batch_labels = batch_labels.to(self.device)
outputs = model(batch_features).squeeze()
loss = criterion(outputs, batch_labels)
val_loss += loss.item()
predictions = (outputs > 0.5).float()
val_correct += (predictions == batch_labels).sum().item()
val_total += batch_labels.size(0)
# Calculate metrics
train_loss /= len(train_loader)
val_loss /= len(val_loader)
train_acc = train_correct / train_total
val_acc = val_correct / val_total
training_history.append({
'epoch': epoch,
'train_loss': train_loss,
'val_loss': val_loss,
'train_acc': train_acc,
'val_acc': val_acc
})
# Learning rate scheduling
scheduler.step(val_loss)
# Early stopping
if val_loss < best_val_loss:
best_val_loss = val_loss
patience_counter = 0
else:
patience_counter += 1
if patience_counter >= self.config.early_stopping_patience:
logger.info(f"Early stopping triggered at epoch {epoch}")
break
if epoch % 10 == 0:
logger.info(f"Epoch {epoch}: Train Loss={train_loss:.4f}, "
f"Val Loss={val_loss:.4f}, Val Acc={val_acc:.4f}")
# Calculate final metrics
model.eval()
with torch.no_grad():
val_features = torch.FloatTensor(X_val).to(self.device)
val_predictions = model(val_features).squeeze().cpu().numpy()
val_predictions_binary = (val_predictions > 0.5).astype(int)
metrics = {
'accuracy': accuracy_score(y_val, val_predictions_binary),
'precision': precision_score(y_val, val_predictions_binary, zero_division=0),
'recall': recall_score(y_val, val_predictions_binary, zero_division=0),
'f1': f1_score(y_val, val_predictions_binary, zero_division=0),
'auc_roc': roc_auc_score(y_val, val_predictions) if len(np.unique(y_val)) > 1 else 0.0
}
# Move model back to CPU for storage
model.cpu()
training_duration = time.time() - start_time
training_duration_gauge.set(training_duration)
return model, metrics, training_duration
def _optimize_hyperparameters(self, X_train: np.ndarray, y_train: np.ndarray,
X_val: np.ndarray, y_val: np.ndarray,
n_trials: int = 20) -> Dict[str, Any]:
"""Optimize hyperparameters using Optuna"""
def objective(trial):
# Suggest hyperparameters
n_layers = trial.suggest_int('n_layers', 2, 4)
hidden_dims = []
for i in range(n_layers):
hidden_dims.append(trial.suggest_int(f'hidden_dim_{i}', 32, 256, step=32))
learning_rate = trial.suggest_float('learning_rate', 1e-4, 1e-2, log=True)
batch_size = trial.suggest_categorical('batch_size', [16, 32, 64, 128])
dropout_rate = trial.suggest_float('dropout_rate', 0.1, 0.5)
# Create and train model
model = CustomNeuralNetwork(
input_dim=X_train.shape[1],
hidden_dims=hidden_dims,
output_dim=1,
dropout_rate=dropout_rate
).to(self.device)
# Quick training for hyperparameter search
train_dataset = CustomDataset(X_train, y_train)
val_dataset = CustomDataset(X_val, y_val)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
criterion = nn.BCELoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# Train for fewer epochs during optimization
for epoch in range(20):
model.train()
for batch_features, batch_labels in train_loader:
batch_features = batch_features.to(self.device)
batch_labels = batch_labels.to(self.device)
optimizer.zero_grad()
outputs = model(batch_features).squeeze()
loss = criterion(outputs, batch_labels)
loss.backward()
optimizer.step()
# Evaluate
model.eval()
val_loss = 0.0
with torch.no_grad():
for batch_features, batch_labels in val_loader:
batch_features = batch_features.to(self.device)
batch_labels = batch_labels.to(self.device)
outputs = model(batch_features).squeeze()
loss = criterion(outputs, batch_labels)
val_loss += loss.item()
return val_loss / len(val_loader)
# Run optimization
study = optuna.create_study(direction='minimize')
study.optimize(objective, n_trials=n_trials, show_progress_bar=True)
# Extract best parameters
best_params = study.best_params
hidden_dims = []
for i in range(best_params['n_layers']):
hidden_dims.append(best_params[f'hidden_dim_{i}'])
return {
'hidden_dims': hidden_dims,
'learning_rate': best_params['learning_rate'],
'batch_size': best_params['batch_size'],
'dropout_rate': best_params['dropout_rate']
}
class PerformanceMonitor:
"""Monitors model performance and system health"""
def __init__(self, config: MLOpsConfig, db_manager: DatabaseManager):
self.config = config
self.db_manager = db_manager
self.performance_buffer = deque(maxlen=config.monitoring_window_size)
self.alert_counter = 0
def record_prediction(self, model_version: str, prediction: float,
confidence: float, latency_ms: float,
input_features: np.ndarray) -> None:
"""Record a prediction for monitoring"""
# Update metrics
prediction_counter.inc()
prediction_latency.observe(latency_ms / 1000.0)
# Save to database
self.db_manager.insert_record('prediction_logs', {
'model_version': model_version,
'input_features': json.dumps(input_features.tolist()) if isinstance(input_features, np.ndarray) else json.dumps(input_features),
'prediction': prediction,
'confidence': confidence,
'latency_ms': latency_ms,
'timestamp': datetime.now()
})
# Add to performance buffer
self.performance_buffer.append({
'prediction': prediction,
'confidence': confidence,
'latency_ms': latency_ms,
'timestamp': datetime.now()
})
# Check for alerts
self._check_alerts()
def record_model_performance(self, model_version: str, metrics: Dict[str, float],
prediction_count: int = 0) -> None:
"""Record model performance metrics"""
for metric_name, metric_value in metrics.items():
self.db_manager.insert_record('performance_metrics', {
'model_version': model_version,
'metric_name': metric_name,
'metric_value': metric_value,
'timestamp': datetime.now(),
'prediction_count': prediction_count
})
# Update Prometheus metrics
if 'accuracy' in metrics:
model_accuracy_gauge.set(metrics['accuracy'])
def _check_alerts(self) -> None:
"""Check for performance degradation alerts"""
if len(self.performance_buffer) < 100:
return
recent_latencies = [p['latency_ms'] for p in list(self.performance_buffer)[-100:]]
avg_latency = np.mean(recent_latencies)
if avg_latency > self.config.max_latency_ms:
self.alert_counter += 1
if self.alert_counter >= self.config.alert_threshold_consecutive_failures:
logger.warning(f"Performance alert: Average latency {avg_latency:.2f}ms "
f"exceeds threshold {self.config.max_latency_ms}ms")
self.alert_counter = 0
else:
self.alert_counter = 0
def get_performance_summary(self, model_version: str = None,
hours: int = 24) -> Dict[str, Any]:
"""Get performance summary for specified period"""
start_time = datetime.now() - timedelta(hours=hours)
# Get prediction statistics
query = """
SELECT
COUNT(*) as total_predictions,
AVG(prediction) as avg_prediction,
AVG(confidence) as avg_confidence,
AVG(latency_ms) as avg_latency,
MAX(latency_ms) as max_latency,
MIN(latency_ms) as min_latency
FROM prediction_logs
WHERE timestamp > ?
"""
params = [start_time]
if model_version:
query += " AND model_version = ?"
params.append(model_version)
results = self.db_manager.execute_query(query, tuple(params))
summary = {
'period_hours': hours,
'model_version': model_version,
'predictions': {}
}
if results and results[0][0]:
row = results[0]
summary['predictions'] = {
'total': row[0],
'avg_prediction': row[1],
'avg_confidence': row[2],
'avg_latency_ms': row[3],
'max_latency_ms': row[4],
'min_latency_ms': row[5]
}
# Get model metrics
query = """
SELECT metric_name, AVG(metric_value) as avg_value
FROM performance_metrics
WHERE timestamp > ?
"""
params = [start_time]
if model_version:
query += " AND model_version = ?"
params.append(model_version)
query += " GROUP BY metric_name"
results = self.db_manager.execute_query(query, tuple(params))
summary['metrics'] = {}
for row in results:
summary['metrics'][row[0]] = row[1]
return summary
class MLOpsEngine:
"""Main MLOps engine that orchestrates all components"""
def __init__(self, config: MLOpsConfig):
self.config = config
self.db_manager = DatabaseManager(config.db_path)
self.model_registry = ModelRegistry(config.model_registry_uri, self.db_manager)
self.cost_tracker = CostTracker(config, self.db_manager)
self.ab_test_manager = ABTestManager(config, self.db_manager)
self.performance_monitor = PerformanceMonitor(config, self.db_manager)
self.trainer = ModelTrainer(config)
self.drift_detector = None
self.scaler = StandardScaler()
# Threading for auto-retraining
self.auto_retrain_thread = None
self.stop_auto_retrain = threading.Event()
# Initialize reference data for drift detection
self.reference_data = None
self.reference_labels = None
# Current active A/B test
self.active_ab_test = None
def generate_synthetic_data(self, n_samples: int = 1000,
n_features: int = 10,
noise_level: float = 0.1) -> Tuple[np.ndarray, np.ndarray]:
"""Generate synthetic data for demonstration"""
X, y = make_classification(
n_samples=n_samples,
n_features=n_features,
n_informative=n_features - 2,
n_redundant=2,
n_clusters_per_class=2,
weights=[0.7, 0.3],
flip_y=noise_level,
random_state=42
)
# Add some temporal drift to simulate real-world scenarios
drift_factor = np.random.normal(0, 0.1, size=(n_samples, n_features))
X = X + drift_factor * np.arange(n_samples).reshape(-1, 1) / n_samples
return X, y
def prepare_data(self, X: np.ndarray, y: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""Prepare data for training/inference"""
# Handle class imbalance
unique_classes = np.unique(y)
if len(unique_classes) == 2:
class_counts = np.bincount(y.astype(int))
if min(class_counts) / max(class_counts) < 0.5:
logger.info("Applying SMOTE for class imbalance")
smote = SMOTE(random_state=42)
X, y = smote.fit_resample(X, y)
return X, y
def train_new_model(self, X: np.ndarray = None, y: np.ndarray = None,
optimize_hyperparameters: bool = True) -> str:
"""Train a new model and register it"""
# Generate synthetic data if none provided
if X is None or y is None:
logger.info("Generating synthetic training data")
X, y = self.generate_synthetic_data(n_samples=5000)
# Prepare data
X, y = self.prepare_data(X, y)
# Fit scaler
self.scaler.fit(X)
X_scaled = self.scaler.transform(X)
# Store reference data for drift detection
if self.reference_data is None:
self.reference_data = X_scaled[:1000]
self.reference_labels = y[:1000]
self.drift_detector = DriftDetector(
self.reference_data,
self.config,
feature_names=self.config.input_features[:X.shape[1]]
)
# Split data
X_train, X_test, y_train, y_test = train_test_split(
X_scaled, y, test_size=0.2, random_state=42, stratify=y
)
# Start MLflow run if enabled
if self.config.experiment_tracking:
mlflow.start_run()
try:
# Train model
logger.info("Starting model training")
model, metrics, training_duration = self.trainer.train_model(
X_train, y_train, X_test, y_test,
optimize_hyperparameters=optimize_hyperparameters
)
# Evaluate on test set
model.eval()
with torch.no_grad():
test_features = torch.FloatTensor(X_test)
test_predictions = model(test_features).squeeze().numpy()
test_predictions_binary = (test_predictions > 0.5).astype(int)
# Calculate test metrics
test_metrics = {
'test_accuracy': accuracy_score(y_test, test_predictions_binary),
'test_precision': precision_score(y_test, test_predictions_binary, zero_division=0),
'test_recall': recall_score(y_test, test_predictions_binary, zero_division=0),
'test_f1': f1_score(y_test, test_predictions_binary, zero_division=0),
'test_auc_roc': roc_auc_score(y_test, test_predictions) if len(np.unique(y_test)) > 1 else 0.0
}
# Combine metrics
all_metrics = {**metrics, **test_metrics}
# Log metrics to MLflow
if self.config.experiment_tracking:
for metric_name, metric_value in all_metrics.items():
mlflow.log_metric(metric_name, metric_value)
mlflow.log_param("training_duration", training_duration)
mlflow.pytorch.log_model(model, "model")
# Create metadata
metadata = {
'training_samples': len(X_train),
'test_samples': len(X_test),
'features': X.shape[1],
'training_duration': training_duration,
'hyperparameter_optimization': optimize_hyperparameters,
'timestamp': datetime.now().isoformat()
}
# Register model
version_id = self.model_registry.register_model(
model, all_metrics, metadata, training_duration
)
# Track costs
self.cost_tracker.track_training_cost(training_duration, version_id)
storage_size_gb = os.path.getsize(
self.model_registry.base_path / f"model_{version_id}.pkl"
) / (1024 ** 3)
self.cost_tracker.track_storage_cost(storage_size_gb, version_id)
# Record performance
self.performance_monitor.record_model_performance(version_id, all_metrics)
logger.info(f"Model training completed. Version: {version_id}")
logger.info(f"Test Accuracy: {test_metrics['test_accuracy']:.4f}")
# Auto-promote if meets criteria
if test_metrics['test_accuracy'] >= self.config.min_accuracy:
if not self.model_registry.current_version:
self.model_registry.promote_model(version_id)
logger.info(f"Auto-promoted model {version_id} to production")
return version_id
finally:
if self.config.experiment_tracking:
mlflow.end_run()
def predict(self, features: np.ndarray, use_ab_test: bool = False) -> Dict[str, Any]:
"""Make predictions using the current production model"""
start_time = time.time()
# Determine which model to use
if use_ab_test and self.active_ab_test:
model_version = self.ab_test_manager.route_request(self.active_ab_test)
else:
model_version = self.model_registry.current_version
if not model_version:
raise ValueError("No production model available")
# Get model
model_info = self.model_registry.get_model(model_version)
if not model_info or not model_info.model:
raise ValueError(f"Model {model_version} not found")
model = model_info.model
# Prepare features
if features.ndim == 1:
features = features.reshape(1, -1)
features_scaled = self.scaler.transform(features)
# Make prediction
model.eval()
with torch.no_grad():
features_tensor = torch.FloatTensor(features_scaled)
outputs = model(features_tensor).squeeze().numpy()
if outputs.ndim == 0:
outputs = np.array([outputs])
predictions = (outputs > 0.5).astype(int)
confidences = np.where(outputs > 0.5, outputs, 1 - outputs)
# Calculate latency
latency_ms = (time.time() - start_time) * 1000
# Record prediction
for i in range(len(predictions)):
self.performance_monitor.record_prediction(
model_version,
float(predictions[i]),
float(confidences[i]),
latency_ms,
features[i]
)
# Record for A/B test if active
if use_ab_test and self.active_ab_test:
# Use confidence as performance metric for A/B testing
avg_confidence = np.mean(confidences)
self.ab_test_manager.record_performance(
self.active_ab_test, model_version, avg_confidence
)
# Track inference cost
self.cost_tracker.track_inference_cost(len(predictions), model_version)
return {
'predictions': predictions.tolist(),
'confidences': confidences.tolist(),
'model_version': model_version,
'latency_ms': latency_ms
}
def check_drift(self, current_data: np.ndarray = None) -> Dict[str, Any]:
"""Check for data drift"""
if self.drift_detector is None:
return {'error': 'Drift detector not initialized. Train a model first.'}
# Generate current data if not provided
if current_data is None:
current_data, _ = self.generate_synthetic_data(n_samples=1000)
# Add more drift for demonstration
current_data = current_data + np.random.normal(0, 0.2, current_data.shape)
current_data_scaled = self.scaler.transform(current_data)
# Detect drift
drift_results = self.drift_detector.detect_drift(current_data_scaled)
# Log drift results
if self.model_registry.current_version:
self.db_manager.insert_record('drift_logs', {
'model_version': self.model_registry.current_version,
'drift_type': drift_results['method'],
'drift_score': drift_results['drift_score'],
'is_drift': int(drift_results['is_drift']),
'feature_drifts': json.dumps(drift_results['feature_drifts']),
'timestamp': datetime.now()
})
# Update metric
drift_score_gauge.set(drift_results['drift_score'])
return drift_results
def start_ab_test(self, challenger_version: str = None) -> str:
"""Start an A/B test between current model and a challenger"""
if not self.model_registry.current_version:
raise ValueError("No current production model for A/B testing")
# Train challenger model if not specified
if not challenger_version:
logger.info("Training challenger model for A/B test")
challenger_version = self.train_new_model()
# Create A/B test
experiment_id = self.ab_test_manager.create_experiment(
self.model_registry.current_version,
challenger_version,
"auto_ab_test"
)
self.active_ab_test = experiment_id
logger.info(f"Started A/B test: {experiment_id}")
return experiment_id
def complete_ab_test(self, experiment_id: str = None) -> Dict[str, Any]:
"""Complete an A/B test and potentially promote winner"""
if experiment_id is None:
experiment_id = self.active_ab_test
if not experiment_id:
return {'error': 'No active A/B test'}
# Get results
results = self.ab_test_manager._analyze_experiment(experiment_id)
# Auto-promote winner if significant
if results.get('winner'):
winner_version = results['winner']
logger.info(f"A/B test winner: {winner_version}")
# Check if winner meets minimum accuracy
model_info = self.model_registry.get_model(winner_version)
if model_info and model_info.metrics.get('accuracy', 0) >= self.config.min_accuracy:
self.model_registry.promote_model(winner_version)
logger.info(f"Promoted {winner_version} to production based on A/B test")
self.active_ab_test = None
return results
def auto_retrain_loop(self):
"""Background thread for automatic retraining"""
while not self.stop_auto_retrain.is_set():
try:
# Check drift
drift_results = self.check_drift()
if drift_results.get('is_drift', False):
logger.info("Drift detected, triggering automatic retraining")
# Generate new training data (in practice, this would be recent data)
X, y = self.generate_synthetic_data(n_samples=5000)
# Train new model
new_version = self.train_new_model(X, y)
# Start A/B test with new model
self.start_ab_test(new_version)
logger.info(f"Started A/B test with retrained model {new_version}")
# Wait for next check
self.stop_auto_retrain.wait(self.config.auto_retrain_interval_hours * 3600)
except Exception as e:
logger.error(f"Error in auto-retrain loop: {e}")
self.stop_auto_retrain.wait(300) # Wait 5 minutes on error
def start_auto_retrain(self):
"""Start automatic retraining background process"""
if self.config.auto_retrain_enabled and not self.auto_retrain_thread:
self.auto_retrain_thread = threading.Thread(
target=self.auto_retrain_loop,
daemon=True
)
self.auto_retrain_thread.start()
logger.info("Started auto-retraining background process")
def stop_auto_retrain(self):
"""Stop automatic retraining"""
if self.auto_retrain_thread:
self.stop_auto_retrain.set()
self.auto_retrain_thread.join()
self.auto_retrain_thread = None
logger.info("Stopped auto-retraining background process")
def get_model_card(self, version_id: str = None) -> Dict[str, Any]:
"""Generate a model card for documentation"""
if version_id is None:
version_id = self.model_registry.current_version
if not version_id:
return {'error': 'No model version specified'}
model_info = self.model_registry.get_model(version_id)
if not model_info:
return {'error': f'Model {version_id} not found'}
# Get additional information from database
perf_summary = self.performance_monitor.get_performance_summary(
model_version=version_id, hours=24*7
)
cost_report = self.cost_tracker.get_cost_report(days=30)
# Check for drift logs
drift_logs = self.db_manager.execute_query(
"""SELECT COUNT(*) as drift_count, AVG(drift_score) as avg_drift_score
FROM drift_logs WHERE model_version = ? AND timestamp > ?""",
(version_id, datetime.now() - timedelta(days=7))
)
model_card = {
'model_name': self.config.model_name,
'version_id': version_id,
'created_at': model_info.created_at.isoformat(),
'metrics': model_info.metrics,
'metadata': model_info.metadata,
'performance_summary': perf_summary,
'cost_summary': cost_report,
'drift_summary': {
'drift_count': drift_logs[0][0] if drift_logs else 0,
'avg_drift_score': drift_logs[0][1] if drift_logs else 0
},
'deployment_count': model_info.deployment_count,
'is_production': version_id == self.model_registry.current_version
}
return model_card
def export_to_huggingface(self, version_id: str = None,
repo_name: str = None,
token: str = None) -> str:
"""Export model to Hugging Face Hub"""
if version_id is None:
version_id = self.model_registry.current_version
if not version_id:
return "No model version specified"
model_info = self.model_registry.get_model(version_id)
if not model_info:
return f"Model {version_id} not found"
if not repo_name:
repo_name = f"{self.config.model_name}_{version_id}"
try:
# Initialize HF API
api = HfApi()
# Create repository
repo_url = create_repo(repo_name, token=token, exist_ok=True)
# Upload model file
model_path = Path(model_info.model_path)
if model_path.exists():
upload_file(
path_or_fileobj=str(model_path),
path_in_repo=f"model.pkl",
repo_id=repo_name,
token=token
)
# Create and upload model card
model_card = self.get_model_card(version_id)
model_card_content = f"""
# {self.config.model_name}
## Model Details
- **Version**: {version_id}
- **Created**: {model_card['created_at']}
- **Task**: {self.config.task_type}
## Performance Metrics
"""
for metric, value in model_card['metrics'].items():
model_card_content += f"- **{metric}**: {value:.4f}\n"
# Save and upload model card
model_card_path = self.model_registry.base_path / f"README_{version_id}.md"
with open(model_card_path, 'w') as f:
f.write(model_card_content)
upload_file(
path_or_fileobj=str(model_card_path),
path_in_repo="README.md",
repo_id=repo_name,
token=token
)
return f"Model exported to: {repo_url}"
except Exception as e:
return f"Export failed: {str(e)}"
def create_gradio_interface(mlops_engine: MLOpsEngine) -> gr.Blocks:
"""Create the Gradio interface for the MLOps system"""
with gr.Blocks(title="MLOps System", theme=gr.themes.Soft()) as interface:
gr.Markdown("""
# End-to-End Automated MLOps Framework
**Author**: Spencer Purdy
Enterprise-grade MLOps platform with automated model training, versioning, drift detection,
A/B testing, and deployment capabilities.
""")
with gr.Tabs():
# Model Training Tab
with gr.TabItem("Model Training"):
gr.Markdown("### Train New Model")
with gr.Row():
n_samples = gr.Slider(
minimum=1000, maximum=10000, value=5000, step=1000,
label="Number of Training Samples"
)
optimize_hp = gr.Checkbox(
value=True,
label="Optimize Hyperparameters"
)
train_button = gr.Button("Train New Model", variant="primary")
training_output = gr.Textbox(
label="Training Results",
lines=10,
max_lines=20
)
def train_model(n_samples, optimize_hp):
try:
# Generate data
X, y = mlops_engine.generate_synthetic_data(n_samples=n_samples)
# Train model
version_id = mlops_engine.train_new_model(
X, y, optimize_hyperparameters=optimize_hp
)
# Get model info
model_info = mlops_engine.model_registry.get_model(version_id)
result = f"Model Training Completed\n"
result += f"{'=' * 50}\n"
result += f"Version ID: {version_id}\n"
result += f"Training Samples: {n_samples}\n"
result += f"Hyperparameter Optimization: {optimize_hp}\n\n"
result += f"Performance Metrics:\n"
result += f"{'-' * 30}\n"
for metric, value in model_info.metrics.items():
result += f"{metric}: {value:.4f}\n"
return result
except Exception as e:
return f"Error during training: {str(e)}"
train_button.click(
train_model,
inputs=[n_samples, optimize_hp],
outputs=training_output
)
# Model Registry Tab
with gr.TabItem("Model Registry"):
gr.Markdown("### Model Registry and Versioning")
refresh_registry_btn = gr.Button("Refresh Model List")
model_list = gr.Dataframe(
headers=["Version ID", "Created At", "Accuracy", "Status"],
label="Registered Models"
)
with gr.Row():
version_selector = gr.Dropdown(
label="Select Model Version",
choices=[]
)
promote_btn = gr.Button("Promote to Production")
promote_output = gr.Textbox(label="Promotion Result")
def refresh_model_list():
models = []
for version_id, version in mlops_engine.model_registry.versions.items():
status = "Production" if version_id == mlops_engine.model_registry.current_version else "Staged"
models.append([
version_id,
version.created_at.strftime("%Y-%m-%d %H:%M:%S"),
f"{version.metrics.get('accuracy', 0):.4f}",
status
])
# Sort by created date
models.sort(key=lambda x: x[1], reverse=True)
# Update dropdown choices
version_choices = [m[0] for m in models]
return models, gr.update(choices=version_choices)
def promote_model(version_id):
if not version_id:
return "Please select a model version"
try:
mlops_engine.model_registry.promote_model(version_id)
return f"Successfully promoted {version_id} to production"
except Exception as e:
return f"Error promoting model: {str(e)}"
refresh_registry_btn.click(
refresh_model_list,
outputs=[model_list, version_selector]
)
promote_btn.click(
promote_model,
inputs=version_selector,
outputs=promote_output
)
# Load initial data
interface.load(refresh_model_list, outputs=[model_list, version_selector])
# Prediction Tab
with gr.TabItem("Make Predictions"):
gr.Markdown("### Make Predictions Using Production Model")
with gr.Row():
feature_inputs = []
for i in range(10):
feature_inputs.append(
gr.Number(
label=f"Feature {i+1}",
value=0.0
)
)
with gr.Row():
predict_btn = gr.Button("Predict", variant="primary")
use_ab_test = gr.Checkbox(
label="Use A/B Test (if active)",
value=False
)
prediction_output = gr.JSON(label="Prediction Results")
def make_prediction(*features, use_ab_test=False):
try:
features_array = np.array(features).reshape(1, -1)
results = mlops_engine.predict(features_array, use_ab_test=use_ab_test)
return results
except Exception as e:
return {"error": str(e)}
predict_btn.click(
make_prediction,
inputs=feature_inputs + [use_ab_test],
outputs=prediction_output
)
# Drift Detection Tab
with gr.TabItem("Drift Detection"):
gr.Markdown("### Data Drift Detection")
check_drift_btn = gr.Button("Check for Data Drift", variant="primary")
drift_output = gr.Textbox(
label="Drift Detection Results",
lines=15
)
def check_drift():
try:
results = mlops_engine.check_drift()
if 'error' in results:
return results['error']
report = mlops_engine.drift_detector.generate_drift_report(
mlops_engine.scaler.transform(
mlops_engine.generate_synthetic_data(n_samples=1000)[0]
)
)
return report
except Exception as e:
return f"Error checking drift: {str(e)}"
check_drift_btn.click(check_drift, outputs=drift_output)
# A/B Testing Tab
with gr.TabItem("A/B Testing"):
gr.Markdown("### A/B Testing for Model Comparison")
with gr.Row():
start_ab_btn = gr.Button("Start New A/B Test", variant="primary")
check_ab_btn = gr.Button("Check Current A/B Test")
complete_ab_btn = gr.Button("Complete A/B Test")
ab_output = gr.JSON(label="A/B Test Results")
def start_ab_test():
try:
experiment_id = mlops_engine.start_ab_test()
return {
"status": "A/B test started",
"experiment_id": experiment_id,
"message": "Make predictions with 'Use A/B Test' enabled to generate results"
}
except Exception as e:
return {"error": str(e)}
def check_ab_test():
if mlops_engine.active_ab_test:
return mlops_engine.ab_test_manager.get_experiment_status(
mlops_engine.active_ab_test
)
else:
return {"status": "No active A/B test"}
def complete_ab_test():
try:
results = mlops_engine.complete_ab_test()
return results
except Exception as e:
return {"error": str(e)}
start_ab_btn.click(start_ab_test, outputs=ab_output)
check_ab_btn.click(check_ab_test, outputs=ab_output)
complete_ab_btn.click(complete_ab_test, outputs=ab_output)
# Performance Monitoring Tab
with gr.TabItem("Performance Monitoring"):
gr.Markdown("### Model Performance Monitoring")
with gr.Row():
hours_slider = gr.Slider(
minimum=1, maximum=168, value=24, step=1,
label="Time Window (hours)"
)
refresh_perf_btn = gr.Button("Refresh Performance Metrics")
performance_output = gr.JSON(label="Performance Summary")
def get_performance_summary(hours):
try:
current_version = mlops_engine.model_registry.current_version
if not current_version:
return {"error": "No production model"}
summary = mlops_engine.performance_monitor.get_performance_summary(
model_version=current_version,
hours=hours
)
return summary
except Exception as e:
return {"error": str(e)}
refresh_perf_btn.click(
get_performance_summary,
inputs=hours_slider,
outputs=performance_output
)
# Cost Tracking Tab
with gr.TabItem("Cost Tracking"):
gr.Markdown("### Cost Analysis and Tracking")
with gr.Row():
days_slider = gr.Slider(
minimum=1, maximum=90, value=30, step=1,
label="Report Period (days)"
)
refresh_cost_btn = gr.Button("Generate Cost Report")
cost_output = gr.JSON(label="Cost Report")
def get_cost_report(days):
try:
report = mlops_engine.cost_tracker.get_cost_report(days=days)
return report
except Exception as e:
return {"error": str(e)}
refresh_cost_btn.click(
get_cost_report,
inputs=days_slider,
outputs=cost_output
)
# Model Card Tab
with gr.TabItem("Model Card"):
gr.Markdown("### Model Documentation and Cards")
with gr.Row():
model_version_input = gr.Textbox(
label="Model Version (leave empty for current)",
placeholder="e.g., v_20240101_120000_1"
)
generate_card_btn = gr.Button("Generate Model Card")
model_card_output = gr.JSON(label="Model Card")
def generate_model_card(version_id):
try:
if not version_id:
version_id = None
card = mlops_engine.get_model_card(version_id)
return card
except Exception as e:
return {"error": str(e)}
generate_card_btn.click(
generate_model_card,
inputs=model_version_input,
outputs=model_card_output
)
# Settings Tab
with gr.TabItem("Settings"):
gr.Markdown("### System Settings and Configuration")
with gr.Row():
auto_retrain_checkbox = gr.Checkbox(
value=mlops_engine.config.auto_retrain_enabled,
label="Enable Auto-Retraining"
)
start_auto_btn = gr.Button("Apply Auto-Retrain Setting")
with gr.Row():
drift_threshold = gr.Slider(
minimum=0.01, maximum=0.5, value=mlops_engine.config.drift_detection_threshold,
step=0.01, label="Drift Detection Threshold"
)
update_threshold_btn = gr.Button("Update Threshold")
settings_output = gr.Textbox(label="Settings Update Result")
def toggle_auto_retrain(enable):
try:
mlops_engine.config.auto_retrain_enabled = enable
if enable:
mlops_engine.start_auto_retrain()
return "Auto-retraining enabled and started"
else:
mlops_engine.stop_auto_retrain()
return "Auto-retraining disabled"
except Exception as e:
return f"Error updating auto-retrain: {str(e)}"
def update_drift_threshold(threshold):
try:
mlops_engine.config.drift_detection_threshold = threshold
if mlops_engine.drift_detector:
mlops_engine.drift_detector.drift_threshold = threshold
return f"Drift threshold updated to {threshold}"
except Exception as e:
return f"Error updating threshold: {str(e)}"
start_auto_btn.click(
toggle_auto_retrain,
inputs=auto_retrain_checkbox,
outputs=settings_output
)
update_threshold_btn.click(
update_drift_threshold,
inputs=drift_threshold,
outputs=settings_output
)
# Footer
gr.Markdown("""
---
**MLOps System** - Enterprise-grade machine learning operations platform
Features: Automated training, model versioning, drift detection, A/B testing,
performance monitoring, cost tracking, and model deployment.
""")
return interface
def main():
"""Main execution function"""
# Initialize MLOps engine
logger.info("Initializing MLOps Engine...")
mlops_engine = MLOpsEngine(config)
# Train initial model if no models exist
if not mlops_engine.model_registry.versions:
logger.info("No models found. Training initial model...")
initial_version = mlops_engine.train_new_model()
logger.info(f"Initial model trained: {initial_version}")
# Start auto-retraining if enabled
if config.auto_retrain_enabled:
mlops_engine.start_auto_retrain()
# Create and launch Gradio interface
logger.info("Creating Gradio interface...")
interface = create_gradio_interface(mlops_engine)
# Launch the interface
logger.info("Launching MLOps System interface...")
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True
)
if __name__ == "__main__":
main() |