File size: 143,965 Bytes
df5964c 8d4665a b8c20d9 df5964c 8d4665a df5964c 8d4665a df5964c 8d4665a df5964c b8c20d9 8d4665a df5964c 8d4665a df5964c 8d4665a df5964c 8d4665a b8c20d9 df5964c ba061fb 8d4665a df5964c 8d4665a df5964c 8d4665a df5964c 8d4665a df5964c 8d4665a b8c20d9 8d4665a df5964c 8d4665a b8c20d9 8d4665a df5964c 8d4665a df5964c 8d4665a b8c20d9 df5964c 8d4665a df5964c 8d4665a b8c20d9 df5964c 8d4665a 8619880 8d4665a df5964c 8d4665a b8c20d9 df5964c 8d4665a df5964c 8d4665a df5964c 8d4665a df5964c 8d4665a b8c20d9 8d4665a df5964c 8d4665a b8c20d9 8d4665a b8c20d9 8d4665a df5964c 8d4665a df5964c 8d4665a df5964c ba061fb df5964c 8d4665a df5964c 8d4665a df5964c 8d4665a b8c20d9 8d4665a b8c20d9 8d4665a b8c20d9 8d4665a 8619880 df5964c 8d4665a df5964c 8d4665a b8c20d9 df5964c 8d4665a df5964c 8d4665a df5964c 8d4665a df5964c 8d4665a df5964c 8d4665a df5964c 8d4665a b8c20d9 df5964c 8d4665a df5964c 8d4665a df5964c 8d4665a df5964c 8d4665a df5964c 8d4665a df5964c 8d4665a b8c20d9 df5964c 8d4665a df5964c 8d4665a df5964c 8d4665a df5964c 8d4665a df5964c 8d4665a df5964c 8d4665a b8c20d9 df5964c 8d4665a df5964c 8d4665a df5964c 8d4665a df5964c 8d4665a df5964c 8d4665a 8619880 8d4665a ba061fb 8d4665a b8c20d9 8d4665a f923db1 8d4665a f923db1 8d4665a f923db1 8d4665a ba061fb 8d4665a ba061fb 8d4665a ba061fb 8d4665a b8c20d9 df5964c 8d4665a df5964c 8d4665a 23740f1 8d4665a 23740f1 8d4665a df5964c 8d4665a df5964c 8d4665a df5964c 8d4665a b8c20d9 ba061fb 8d4665a df5964c 8d4665a ba061fb ba46c80 ba061fb 8d4665a b8c20d9 8d4665a ba061fb 8d4665a 546542c 8d4665a 546542c 8d4665a b8c20d9 8d4665a b8c20d9 8d4665a ba061fb 8d4665a b8c20d9 8d4665a df5964c 8d4665a ba061fb 8d4665a df5964c 8d4665a ba061fb 8d4665a ba061fb 8d4665a ba061fb 8d4665a df5964c 8d4665a ba061fb 8d4665a ba061fb 8d4665a af7ebb5 8d4665a df5964c 8d4665a df5964c 8d4665a ba061fb f923db1 8d4665a df5964c 8d4665a ba061fb df5964c 8d4665a df5964c 8d4665a ba061fb 8d4665a ba061fb 8d4665a 8619880 8d4665a af7ebb5 8d4665a df5964c 8d4665a df5964c 8d4665a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 |
# Multi-Agent AI Collaboration System
# Author: Spencer Purdy
# Description: Enterprise-grade multi-agent system with specialized AI agents collaborating
# to solve complex problems through intelligent task decomposition and parallel processing.
# Installation (uncomment for Google Colab)
# !pip install gradio langchain langchain-openai openai networkx matplotlib plotly pandas numpy python-dotenv pydantic aiohttp asyncio scipy reportlab pillow
import os
import json
import time
import asyncio
import hashlib
import logging
from datetime import datetime, timedelta
from typing import Dict, List, Tuple, Optional, Any, Union, Set
from dataclasses import dataclass, field
from enum import Enum
import warnings
warnings.filterwarnings('ignore')
# Core libraries
import gradio as gr
import pandas as pd
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
# LangChain and AI libraries
from langchain.schema import BaseMessage, HumanMessage, AIMessage, SystemMessage
from langchain_openai import ChatOpenAI
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.memory import ConversationBufferMemory
from pydantic import BaseModel, Field
# Report generation
from reportlab.lib import colors
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Table, TableStyle, Paragraph, Spacer, PageBreak
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.units import inch
# Async libraries
import aiohttp
from concurrent.futures import ThreadPoolExecutor, as_completed
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class Config:
"""Configuration settings for the multi-agent system."""
# Model settings
DEFAULT_MODEL = "gpt-4"
TEMPERATURE = 0.7
MAX_TOKENS = 1500
# Agent settings
MAX_ITERATIONS = 10
COLLABORATION_TIMEOUT = 300 # seconds
# Visualization settings
GRAPH_UPDATE_INTERVAL = 0.5 # seconds
NODE_COLORS = {
'Researcher': '#3498db',
'Analyst': '#e74c3c',
'Critic': '#f39c12',
'Synthesizer': '#2ecc71',
'Coordinator': '#9b59b6'
}
# Performance settings
ENABLE_PERFORMANCE_TRACKING = True
BENCHMARK_BASELINE = {
"single_agent_time": 45.0,
"single_agent_quality": 0.72
}
# Report settings
CONFIDENCE_THRESHOLD = 0.7
MAX_REPORT_SECTIONS = 10
COMPANY_NAME = "Multi-Agent AI Platform"
# Demo settings
DEMO_MODE_ENABLED = True
DEMO_PROBLEMS = [
"Analyze the impact of remote work on team productivity and collaboration",
"Develop a strategy for sustainable urban transportation",
"Evaluate the risks and benefits of AI in healthcare",
"Design a framework for ethical AI development",
"Create a plan for digital transformation in education"
]
class AgentRole(Enum):
"""Enumeration of agent roles in the system."""
RESEARCHER = "Researcher"
ANALYST = "Analyst"
CRITIC = "Critic"
SYNTHESIZER = "Synthesizer"
COORDINATOR = "Coordinator"
class TaskStatus(Enum):
"""Task execution status."""
PENDING = "pending"
IN_PROGRESS = "in_progress"
COMPLETED = "completed"
FAILED = "failed"
class MessageType(Enum):
"""Types of messages between agents."""
TASK_ASSIGNMENT = "task_assignment"
COLLABORATION_REQUEST = "collaboration_request"
INFORMATION_SHARING = "information_sharing"
FEEDBACK = "feedback"
COMPLETION_REPORT = "completion_report"
@dataclass
class Task:
"""Represents a task to be executed by agents."""
id: str
description: str
assigned_to: Optional[str] = None
status: TaskStatus = TaskStatus.PENDING
dependencies: List[str] = field(default_factory=list)
result: Optional[Any] = None
confidence: float = 0.0
created_at: datetime = field(default_factory=datetime.now)
completed_at: Optional[datetime] = None
metadata: Dict[str, Any] = field(default_factory=dict)
performance_metrics: Dict[str, float] = field(default_factory=dict)
@dataclass
class AgentMessage:
"""Message passed between agents."""
sender: str
recipient: str
content: str
message_type: MessageType
metadata: Dict[str, Any] = field(default_factory=dict)
timestamp: datetime = field(default_factory=datetime.now)
priority: int = 1 # 1 (low) to 5 (high)
class PerformanceTracker:
"""Tracks performance metrics for the multi-agent system."""
def __init__(self):
self.metrics = {
'task_completion_times': [],
'agent_utilization': {},
'collaboration_count': 0,
'total_messages': 0,
'quality_scores': [],
'system_start_time': None,
'system_end_time': None
}
def start_tracking(self):
"""Start performance tracking."""
self.metrics['system_start_time'] = datetime.now()
def end_tracking(self):
"""End performance tracking."""
self.metrics['system_end_time'] = datetime.now()
def record_task_completion(self, task: Task):
"""Record task completion metrics."""
if task.created_at and task.completed_at:
completion_time = (task.completed_at - task.created_at).total_seconds()
self.metrics['task_completion_times'].append(completion_time)
def record_agent_activity(self, agent_name: str, activity_duration: float):
"""Record agent activity duration."""
if agent_name not in self.metrics['agent_utilization']:
self.metrics['agent_utilization'][agent_name] = 0
self.metrics['agent_utilization'][agent_name] += activity_duration
def record_collaboration(self):
"""Record a collaboration event."""
self.metrics['collaboration_count'] += 1
def record_message(self):
"""Record a message exchange."""
self.metrics['total_messages'] += 1
def get_performance_summary(self) -> Dict[str, Any]:
"""Get performance summary statistics."""
total_time = 0
if self.metrics['system_start_time'] and self.metrics['system_end_time']:
total_time = (self.metrics['system_end_time'] -
self.metrics['system_start_time']).total_seconds()
avg_task_time = np.mean(self.metrics['task_completion_times']) if self.metrics['task_completion_times'] else 0
# Calculate improvement over baseline
baseline_time = Config.BENCHMARK_BASELINE['single_agent_time']
time_improvement = ((baseline_time - avg_task_time) / baseline_time * 100) if avg_task_time > 0 else 0
return {
'total_execution_time': total_time,
'average_task_completion_time': avg_task_time,
'total_collaborations': self.metrics['collaboration_count'],
'total_messages': self.metrics['total_messages'],
'agent_utilization': self.metrics['agent_utilization'],
'time_improvement_percentage': time_improvement,
'efficiency_score': self._calculate_efficiency_score()
}
def _calculate_efficiency_score(self) -> float:
"""Calculate overall efficiency score."""
factors = []
# Task completion speed factor
if self.metrics['task_completion_times']:
avg_time = np.mean(self.metrics['task_completion_times'])
speed_factor = min(1.0, Config.BENCHMARK_BASELINE['single_agent_time'] / avg_time)
factors.append(speed_factor)
# Collaboration efficiency factor
if self.metrics['total_messages'] > 0:
collab_factor = min(1.0, self.metrics['collaboration_count'] / (self.metrics['total_messages'] * 0.3))
factors.append(collab_factor)
# Agent utilization factor
if self.metrics['agent_utilization']:
utilization_values = list(self.metrics['agent_utilization'].values())
if utilization_values:
avg_utilization = np.mean(utilization_values)
max_utilization = max(utilization_values)
balance_factor = avg_utilization / max_utilization if max_utilization > 0 else 0
factors.append(balance_factor)
return np.mean(factors) if factors else 0.5
class AgentMemory:
"""Manages agent conversation history and context."""
def __init__(self, max_messages: int = 50):
self.messages: List[AgentMessage] = []
self.max_messages = max_messages
self.context: Dict[str, Any] = {}
self.knowledge_base: Dict[str, Any] = {}
def add_message(self, message: AgentMessage):
"""Add a message to memory."""
self.messages.append(message)
if len(self.messages) > self.max_messages:
self.messages.pop(0)
# Extract and store important information
self._extract_knowledge(message)
def get_recent_messages(self, n: int = 10) -> List[AgentMessage]:
"""Get n most recent messages."""
return self.messages[-n:]
def get_messages_by_sender(self, sender: str) -> List[AgentMessage]:
"""Get all messages from a specific sender."""
return [msg for msg in self.messages if msg.sender == sender]
def get_high_priority_messages(self) -> List[AgentMessage]:
"""Get high priority messages."""
return [msg for msg in self.messages if msg.priority >= 4]
def update_context(self, key: str, value: Any):
"""Update context information."""
self.context[key] = value
def get_context(self, key: str) -> Any:
"""Get context information."""
return self.context.get(key)
def _extract_knowledge(self, message: AgentMessage):
"""Extract and store important knowledge from messages."""
keywords = ['finding', 'conclusion', 'recommendation', 'insight', 'pattern']
content_lower = message.content.lower()
for keyword in keywords:
if keyword in content_lower:
knowledge_key = f"{message.sender}_{keyword}_{len(self.knowledge_base)}"
self.knowledge_base[knowledge_key] = {
'content': message.content,
'sender': message.sender,
'timestamp': message.timestamp,
'type': keyword
}
class BaseAgent:
"""Base class for all AI agents in the system."""
def __init__(self, name: str, role: AgentRole, llm: Optional[ChatOpenAI] = None):
self.name = name
self.role = role
self.llm = llm
self.memory = AgentMemory()
self.active = True
self.current_task: Optional[Task] = None
self.completed_tasks: List[Task] = []
self.performance_tracker = PerformanceTracker()
self.collaboration_partners: Set[str] = set()
async def process_task(self, task: Task) -> Task:
"""Process a task and return the result."""
self.current_task = task
task.status = TaskStatus.IN_PROGRESS
task.assigned_to = self.name
# Record start time
start_time = datetime.now()
try:
# Execute task based on agent role
if self.llm:
result = await self._execute_task(task)
else:
# Demo mode - simulate execution
result = await self._simulate_task_execution(task)
task.result = result
task.status = TaskStatus.COMPLETED
task.completed_at = datetime.now()
task.confidence = self._calculate_confidence(result)
# Record performance metrics
execution_time = (task.completed_at - start_time).total_seconds()
task.performance_metrics['execution_time'] = execution_time
task.performance_metrics['confidence'] = task.confidence
self.completed_tasks.append(task)
self.performance_tracker.record_task_completion(task)
except Exception as e:
logger.error(f"Agent {self.name} failed to process task {task.id}: {str(e)}")
task.status = TaskStatus.FAILED
task.result = f"Error: {str(e)}"
task.confidence = 0.0
finally:
self.current_task = None
return task
async def _execute_task(self, task: Task) -> Any:
"""Execute the task - to be implemented by subclasses."""
raise NotImplementedError("Subclasses must implement _execute_task")
async def _simulate_task_execution(self, task: Task) -> Any:
"""Simulate task execution for demo mode."""
# Simulate processing time
await asyncio.sleep(np.random.uniform(2, 4))
# Create realistic simulation results based on agent role
simulation_templates = {
AgentRole.RESEARCHER: {
"findings": f"Comprehensive research on '{task.description}' reveals multiple perspectives and critical data points.",
"sources": ["Academic studies", "Industry reports", "Expert interviews", "Market analysis"],
"key_points": [
"Significant trends identified in the domain",
"Multiple stakeholder perspectives considered",
"Historical context provides important insights",
"Current state analysis reveals opportunities",
"Future projections indicate growth potential"
],
"data_collected": {
"quantitative": "Statistical analysis of 500+ data points",
"qualitative": "In-depth interviews with 20 experts"
},
"research_quality_score": 0.92
},
AgentRole.ANALYST: {
"analysis": f"Detailed analysis of '{task.description}' reveals clear patterns and actionable insights.",
"patterns": [
{"description": "Upward trend in adoption rates", "type": "trend", "confidence": 0.89},
{"description": "Strong correlation between factors X and Y", "type": "correlation", "confidence": 0.91},
{"description": "Seasonal variations detected", "type": "cyclical", "confidence": 0.87}
],
"insights": [
"Data suggests strong positive outcomes with 85% confidence",
"Multiple factors contribute to observed patterns",
"Strategic opportunities identified in 3 key areas",
"Risk factors are manageable with proper mitigation"
],
"recommendations": [
{"recommendation": "Implement phased approach", "priority": "high"},
{"recommendation": "Focus on high-impact areas first", "priority": "high"},
{"recommendation": "Monitor key metrics continuously", "priority": "medium"}
],
"confidence_metrics": {"overall_confidence": 0.88, "data_quality": 0.90}
},
AgentRole.CRITIC: {
"evaluation": f"Critical evaluation of '{task.description}' identifies strengths and areas for improvement.",
"strengths": [
{"strength": "Comprehensive data coverage", "category": "methodology", "impact": "high"},
{"strength": "Well-structured analysis approach", "category": "process", "impact": "high"},
{"strength": "Clear evidence supporting conclusions", "category": "evidence", "impact": "medium"}
],
"weaknesses": [
{"weakness": "Limited geographic scope", "severity": "medium", "category": "completeness"},
{"weakness": "Some assumptions require validation", "severity": "low", "category": "methodology"}
],
"gaps": [
"Additional longitudinal data would strengthen conclusions",
"Competitive analysis could be expanded"
],
"improvements": [
{"suggestion": "Include more diverse data sources", "priority": "high", "effort": "medium"},
{"suggestion": "Validate assumptions with field testing", "priority": "medium", "effort": "high"}
],
"quality_score": {"overall": 0.85, "breakdown": {"accuracy": 0.88, "completeness": 0.82, "logic": 0.90}}
},
AgentRole.SYNTHESIZER: {
"synthesis": f"Comprehensive synthesis for '{task.description}' integrates all findings into actionable strategy.",
"key_themes": [
{"theme": "Digital transformation opportunity", "description": "Strong potential for technology adoption", "importance": "high"},
{"theme": "Customer-centric approach", "description": "Focus on user experience drives success", "importance": "high"},
{"theme": "Phased implementation", "description": "Gradual rollout minimizes risk", "importance": "medium"}
],
"consensus_points": [
{"point": "All agents agree on strategic direction", "strength": "strong"},
{"point": "Timeline expectations are aligned", "strength": "strong"},
{"point": "Resource requirements are reasonable", "strength": "moderate"}
],
"final_recommendations": [
{"recommendation": "Launch pilot program in Q1", "priority": "high", "timeframe": "immediate"},
{"recommendation": "Establish KPI dashboard", "priority": "high", "timeframe": "immediate"},
{"recommendation": "Build stakeholder coalition", "priority": "medium", "timeframe": "short-term"},
{"recommendation": "Develop training programs", "priority": "medium", "timeframe": "medium-term"}
],
"executive_summary": "Based on comprehensive multi-agent analysis, we recommend a phased approach to implementation with focus on quick wins and risk mitigation. The strategy balances innovation with practical considerations.",
"action_items": [
{"action": "Form implementation task force", "owner": "Leadership", "deadline": "2 weeks"},
{"action": "Develop detailed project plan", "owner": "PMO", "deadline": "1 month"},
{"action": "Secure budget approval", "owner": "Finance", "deadline": "1 month"}
],
"confidence_level": {"overall": 0.91, "factors": {"evidence_strength": True, "consensus_level": True}}
}
}
return simulation_templates.get(self.role, {"result": "Task completed successfully"})
def _calculate_confidence(self, result: Any) -> float:
"""Calculate confidence score for the result."""
base_confidence = 0.7
if result and isinstance(result, dict):
# Check for confidence metrics in result
if 'confidence_metrics' in result:
return result['confidence_metrics'].get('overall_confidence', base_confidence)
# Calculate based on result completeness
expected_keys = {'findings', 'analysis', 'evaluation', 'synthesis'}
actual_keys = set(result.keys())
completeness = len(actual_keys.intersection(expected_keys)) / len(expected_keys)
# Calculate based on content depth
content_length = sum(len(str(v)) for v in result.values() if isinstance(v, (str, list)))
length_factor = min(1.0, content_length / 1000)
# Check for quality indicators
quality_indicators = ['quality_score', 'confidence_level', 'research_quality_score']
quality_bonus = 0.1 if any(ind in result for ind in quality_indicators) else 0
confidence = base_confidence + (completeness * 0.15) + (length_factor * 0.1) + quality_bonus
return min(0.95, confidence)
return base_confidence
async def collaborate(self, other_agent: 'BaseAgent', message: AgentMessage) -> AgentMessage:
"""Handle collaboration with another agent."""
self.memory.add_message(message)
self.collaboration_partners.add(other_agent.name)
self.performance_tracker.record_collaboration()
# Process collaboration request
response_content = await self._process_collaboration(message)
# Create response message
response_message = AgentMessage(
sender=self.name,
recipient=other_agent.name,
content=response_content,
message_type=MessageType.INFORMATION_SHARING,
priority=message.priority
)
other_agent.memory.add_message(response_message)
self.performance_tracker.record_message()
return response_message
async def _process_collaboration(self, message: AgentMessage) -> str:
"""Process collaboration message."""
# Generate contextual response based on agent role
role_responses = {
AgentRole.RESEARCHER: f"Research findings indicate: Based on my investigation, {message.content} aligns with current data trends.",
AgentRole.ANALYST: f"Analytical perspective: The patterns I've identified support {message.content} with 87% confidence.",
AgentRole.CRITIC: f"Critical assessment: While {message.content} has merit, we should also consider potential risks.",
AgentRole.SYNTHESIZER: f"Synthesis observation: Integrating {message.content} into our comprehensive strategy."
}
return role_responses.get(self.role, f"{self.name} acknowledges: {message.content}")
def get_status_summary(self) -> Dict[str, Any]:
"""Get current status summary of the agent."""
return {
'name': self.name,
'role': self.role.value,
'active': self.active,
'current_task': self.current_task.description if self.current_task else None,
'completed_tasks': len(self.completed_tasks),
'average_confidence': np.mean([t.confidence for t in self.completed_tasks]) if self.completed_tasks else 0,
'collaboration_count': len(self.collaboration_partners),
'memory_size': len(self.memory.messages)
}
class ResearcherAgent(BaseAgent):
"""Agent specialized in researching and gathering information."""
def __init__(self, name: str, llm: Optional[ChatOpenAI] = None):
super().__init__(name, AgentRole.RESEARCHER, llm)
self.research_sources: List[str] = []
self.research_methods = ["literature_review", "data_collection", "expert_consultation", "field_research"]
async def _execute_task(self, task: Task) -> Any:
"""Execute research task."""
prompt = ChatPromptTemplate.from_messages([
SystemMessage(content="""You are a Research Agent specializing in gathering comprehensive information.
Your role is to:
1. Break down complex topics into research questions
2. Identify key information sources and data points
3. Provide detailed, factual information with citations where possible
4. Flag areas requiring further investigation
5. Maintain objectivity and consider multiple perspectives"""),
HumanMessage(content=f"Research the following: {task.description}")
])
response = await self.llm.ainvoke(prompt.format_messages())
# Extract and structure research findings
research_result = {
"findings": response.content,
"sources": self._extract_sources(response.content),
"key_points": self._extract_key_points(response.content),
"areas_for_investigation": self._identify_gaps(response.content),
"research_quality_score": self._assess_research_quality(response.content)
}
# Update internal knowledge
self.memory.update_context('latest_research', research_result)
return research_result
def _extract_sources(self, content: str) -> List[str]:
"""Extract potential sources from research content."""
sources = []
source_indicators = ['source:', 'reference:', 'based on:', 'according to', 'study:', 'report:']
lines = content.split('\n')
for line in lines:
line_lower = line.lower()
for indicator in source_indicators:
if indicator in line_lower:
sources.append(line.strip())
break
return sources[:10] # Limit to top 10 sources
def _extract_key_points(self, content: str) -> List[str]:
"""Extract key points from research."""
key_points = []
lines = content.split('\n')
for line in lines:
line = line.strip()
# Check for numbered or bulleted points
if line and (line[0].isdigit() or line.startswith('-') or line.startswith('•')):
key_points.append(line)
# Check for key phrases
elif any(phrase in line.lower() for phrase in ['key finding:', 'important:', 'notably:']):
key_points.append(line)
return key_points[:15] # Limit to top 15 points
def _identify_gaps(self, content: str) -> List[str]:
"""Identify areas needing more research."""
gaps = []
gap_indicators = ['unclear', 'requires further', 'need more', 'investigate',
'unknown', 'limited data', 'insufficient evidence']
sentences = content.split('.')
for sentence in sentences:
sentence_lower = sentence.lower()
if any(indicator in sentence_lower for indicator in gap_indicators):
gaps.append(sentence.strip() + '.')
return gaps[:5]
def _assess_research_quality(self, content: str) -> float:
"""Assess the quality of research output."""
quality_score = 0.5 # Base score
# Check for sources
if self._extract_sources(content):
quality_score += 0.15
# Check for structured content
if self._extract_key_points(content):
quality_score += 0.15
# Check for comprehensive coverage
word_count = len(content.split())
if word_count > 300:
quality_score += 0.1
# Check for analytical depth
analytical_terms = ['analysis', 'evaluation', 'comparison', 'contrast', 'implication']
if any(term in content.lower() for term in analytical_terms):
quality_score += 0.1
return min(1.0, quality_score)
class AnalystAgent(BaseAgent):
"""Agent specialized in analyzing data and identifying patterns."""
def __init__(self, name: str, llm: Optional[ChatOpenAI] = None):
super().__init__(name, AgentRole.ANALYST, llm)
self.analysis_methods = ["statistical", "comparative", "trend", "causal", "predictive"]
self.analysis_frameworks = ["SWOT", "PESTLE", "Porter's Five Forces", "Cost-Benefit"]
async def _execute_task(self, task: Task) -> Any:
"""Execute analysis task."""
# Get context from previous research if available
context = self._get_relevant_context(task)
prompt = ChatPromptTemplate.from_messages([
SystemMessage(content="""You are an Analyst Agent specializing in data analysis and pattern recognition.
Your role is to:
1. Analyze information systematically and objectively
2. Identify patterns, trends, and correlations
3. Provide quantitative insights where possible
4. Draw logical conclusions based on evidence
5. Apply appropriate analytical frameworks
6. Consider multiple analytical perspectives"""),
HumanMessage(content=f"Analyze the following: {task.description}\n\nContext: {context}")
])
response = await self.llm.ainvoke(prompt.format_messages())
# Structure analysis results
analysis_result = {
"analysis": response.content,
"patterns": self._identify_patterns(response.content),
"insights": self._extract_insights(response.content),
"recommendations": self._generate_recommendations(response.content),
"confidence_metrics": self._calculate_analysis_confidence(response.content),
"analytical_framework": self._identify_framework_used(response.content)
}
# Store analysis in memory
self.memory.update_context('latest_analysis', analysis_result)
return analysis_result
def _get_relevant_context(self, task: Task) -> str:
"""Get relevant context from memory for the task."""
context_items = []
# Get recent messages related to the task
recent_messages = self.memory.get_recent_messages(5)
for msg in recent_messages:
if task.description.lower() in msg.content.lower():
context_items.append(f"Previous finding: {msg.content[:200]}...")
# Get knowledge base items
for key, knowledge in self.memory.knowledge_base.items():
if 'finding' in knowledge['type'] or 'insight' in knowledge['type']:
context_items.append(f"Known insight: {knowledge['content'][:200]}...")
return "\n".join(context_items[:3]) # Limit context items
def _identify_patterns(self, content: str) -> List[Dict[str, str]]:
"""Identify patterns in the analysis."""
patterns = []
pattern_types = {
'trend': ['trend', 'increasing', 'decreasing', 'growth', 'decline'],
'correlation': ['correlation', 'relationship', 'associated', 'linked'],
'cyclical': ['cycle', 'periodic', 'seasonal', 'recurring'],
'anomaly': ['anomaly', 'outlier', 'unusual', 'exceptional']
}
sentences = content.split('.')
for sentence in sentences:
sentence_lower = sentence.lower()
for pattern_type, keywords in pattern_types.items():
if any(keyword in sentence_lower for keyword in keywords):
patterns.append({
"description": sentence.strip() + '.',
"type": pattern_type,
"confidence": 0.8
})
break
return patterns[:8]
def _extract_insights(self, content: str) -> List[str]:
"""Extract key insights from analysis."""
insights = []
insight_indicators = ['shows', 'indicates', 'suggests', 'reveals',
'demonstrates', 'implies', 'means that', 'therefore']
sentences = content.split('.')
for sentence in sentences:
sentence_lower = sentence.lower()
if any(indicator in sentence_lower for indicator in insight_indicators):
insights.append(sentence.strip() + '.')
return insights[:10]
def _generate_recommendations(self, content: str) -> List[Dict[str, str]]:
"""Generate recommendations based on analysis."""
recommendations = []
rec_indicators = ['recommend', 'suggest', 'should', 'consider',
'advise', 'propose', 'it would be beneficial']
sentences = content.split('.')
for sentence in sentences:
sentence_lower = sentence.lower()
if any(indicator in sentence_lower for indicator in rec_indicators):
recommendations.append({
"recommendation": sentence.strip() + '.',
"priority": "high" if any(word in sentence_lower for word in ['critical', 'essential', 'must']) else "medium"
})
return recommendations[:7]
def _calculate_analysis_confidence(self, content: str) -> Dict[str, float]:
"""Calculate confidence metrics for the analysis."""
# Count evidence indicators
evidence_count = sum(content.lower().count(word) for word in ['evidence', 'data', 'shows', 'proves'])
uncertainty_count = sum(content.lower().count(word) for word in ['may', 'might', 'possibly', 'perhaps'])
# Calculate confidence scores
evidence_strength = min(1.0, evidence_count / 10)
certainty_level = max(0.0, 1.0 - (uncertainty_count / 10))
# Check for quantitative analysis
quantitative_indicators = ['percentage', '%', 'ratio', 'correlation', 'statistical']
quantitative_score = 0.7 if any(ind in content.lower() for ind in quantitative_indicators) else 0.5
overall_confidence = (evidence_strength + certainty_level + quantitative_score) / 3
return {
"overall_confidence": overall_confidence,
"evidence_strength": evidence_strength,
"certainty_level": certainty_level,
"quantitative_score": quantitative_score
}
def _identify_framework_used(self, content: str) -> Optional[str]:
"""Identify which analytical framework was used."""
content_lower = content.lower()
for framework in self.analysis_frameworks:
if framework.lower() in content_lower:
return framework
# Check for implicit framework usage
if all(word in content_lower for word in ['strength', 'weakness', 'opportunity', 'threat']):
return "SWOT"
elif any(word in content_lower for word in ['political', 'economic', 'social', 'technological']):
return "PESTLE"
return None
class CriticAgent(BaseAgent):
"""Agent specialized in critical evaluation and quality assurance."""
def __init__(self, name: str, llm: Optional[ChatOpenAI] = None):
super().__init__(name, AgentRole.CRITIC, llm)
self.evaluation_criteria = [
"accuracy", "completeness", "logic", "evidence",
"clarity", "relevance", "consistency", "objectivity"
]
self.evaluation_rubric = self._create_evaluation_rubric()
def _create_evaluation_rubric(self) -> Dict[str, Dict[str, float]]:
"""Create evaluation rubric with weighted criteria."""
return {
"accuracy": {"weight": 0.20, "score": 0.0},
"completeness": {"weight": 0.15, "score": 0.0},
"logic": {"weight": 0.15, "score": 0.0},
"evidence": {"weight": 0.15, "score": 0.0},
"clarity": {"weight": 0.10, "score": 0.0},
"relevance": {"weight": 0.10, "score": 0.0},
"consistency": {"weight": 0.10, "score": 0.0},
"objectivity": {"weight": 0.05, "score": 0.0}
}
async def _execute_task(self, task: Task) -> Any:
"""Execute critical evaluation task."""
# Get content to evaluate from context
evaluation_context = self._gather_evaluation_context(task)
prompt = ChatPromptTemplate.from_messages([
SystemMessage(content="""You are a Critic Agent specializing in rigorous evaluation and quality assurance.
Your role is to:
1. Critically evaluate arguments and conclusions
2. Identify weaknesses, gaps, and potential biases
3. Verify logical consistency and evidence quality
4. Suggest improvements and alternative perspectives
5. Ensure high standards of analysis
6. Apply systematic evaluation criteria
7. Provide constructive feedback"""),
HumanMessage(content=f"Critically evaluate the following: {task.description}\n\nContent to evaluate: {evaluation_context}")
])
response = await self.llm.ainvoke(prompt.format_messages())
# Structure critique results
critique_result = {
"evaluation": response.content,
"strengths": self._identify_strengths(response.content),
"weaknesses": self._identify_weaknesses(response.content),
"gaps": self._identify_gaps(response.content),
"improvements": self._suggest_improvements(response.content),
"quality_score": self._calculate_quality_score(response.content),
"alternative_perspectives": self._identify_alternatives(response.content),
"final_verdict": self._generate_verdict(response.content)
}
# Update evaluation history
self.memory.update_context('evaluation_history', critique_result)
return critique_result
def _gather_evaluation_context(self, task: Task) -> str:
"""Gather relevant context for evaluation."""
context_items = []
# Get recent analysis and research results
recent_messages = self.memory.get_recent_messages(10)
for msg in recent_messages:
if msg.message_type in [MessageType.COMPLETION_REPORT, MessageType.INFORMATION_SHARING]:
context_items.append(f"{msg.sender}: {msg.content[:300]}...")
# Get knowledge base insights
for key, knowledge in self.memory.knowledge_base.items():
if knowledge['type'] in ['finding', 'conclusion', 'insight']:
context_items.append(f"Previous {knowledge['type']}: {knowledge['content'][:200]}...")
return "\n\n".join(context_items[:5])
def _identify_strengths(self, content: str) -> List[Dict[str, str]]:
"""Identify strengths in the evaluated content."""
strengths = []
strength_indicators = ['strong', 'excellent', 'well', 'good', 'effective',
'solid', 'robust', 'comprehensive', 'thorough']
sentences = content.split('.')
for sentence in sentences:
sentence_lower = sentence.lower()
for indicator in strength_indicators:
if indicator in sentence_lower:
strengths.append({
"strength": sentence.strip() + '.',
"category": self._categorize_strength(sentence),
"impact": "high" if any(word in sentence_lower for word in ['very', 'extremely', 'highly']) else "medium"
})
break
return strengths[:6]
def _categorize_strength(self, sentence: str) -> str:
"""Categorize the type of strength identified."""
sentence_lower = sentence.lower()
if any(word in sentence_lower for word in ['method', 'approach', 'framework']):
return "methodology"
elif any(word in sentence_lower for word in ['data', 'evidence', 'support']):
return "evidence"
elif any(word in sentence_lower for word in ['logic', 'reasoning', 'argument']):
return "reasoning"
elif any(word in sentence_lower for word in ['clear', 'organized', 'structured']):
return "presentation"
else:
return "general"
def _identify_weaknesses(self, content: str) -> List[Dict[str, str]]:
"""Identify weaknesses in the evaluated content."""
weaknesses = []
weakness_indicators = ['weak', 'lack', 'insufficient', 'poor', 'inadequate',
'missing', 'limited', 'unclear', 'vague']
sentences = content.split('.')
for sentence in sentences:
sentence_lower = sentence.lower()
for indicator in weakness_indicators:
if indicator in sentence_lower:
weaknesses.append({
"weakness": sentence.strip() + '.',
"severity": self._assess_severity(sentence),
"category": self._categorize_weakness(sentence)
})
break
return weaknesses[:6]
def _assess_severity(self, sentence: str) -> str:
"""Assess the severity of a weakness."""
sentence_lower = sentence.lower()
if any(word in sentence_lower for word in ['critical', 'severe', 'major', 'significant']):
return "high"
elif any(word in sentence_lower for word in ['moderate', 'some', 'partial']):
return "medium"
else:
return "low"
def _categorize_weakness(self, sentence: str) -> str:
"""Categorize the type of weakness identified."""
sentence_lower = sentence.lower()
if any(word in sentence_lower for word in ['data', 'evidence', 'support']):
return "evidence"
elif any(word in sentence_lower for word in ['logic', 'reasoning', 'argument']):
return "reasoning"
elif any(word in sentence_lower for word in ['bias', 'objective', 'neutral']):
return "objectivity"
elif any(word in sentence_lower for word in ['complete', 'comprehensive', 'thorough']):
return "completeness"
else:
return "general"
def _identify_gaps(self, content: str) -> List[str]:
"""Identify gaps in the analysis."""
gaps = []
gap_indicators = ['gap', 'missing', 'overlook', 'fail to', 'does not address',
'ignores', 'omits', 'neglects']
sentences = content.split('.')
for sentence in sentences:
sentence_lower = sentence.lower()
if any(indicator in sentence_lower for indicator in gap_indicators):
gaps.append(sentence.strip() + '.')
return gaps[:5]
def _suggest_improvements(self, content: str) -> List[Dict[str, str]]:
"""Suggest improvements based on critique."""
improvements = []
improvement_indicators = ['could', 'should', 'improve', 'enhance',
'strengthen', 'add', 'consider', 'recommend']
sentences = content.split('.')
for sentence in sentences:
sentence_lower = sentence.lower()
if any(indicator in sentence_lower for indicator in improvement_indicators):
improvements.append({
"suggestion": sentence.strip() + '.',
"priority": self._prioritize_improvement(sentence),
"effort": self._estimate_effort(sentence)
})
return improvements[:7]
def _prioritize_improvement(self, sentence: str) -> str:
"""Prioritize improvement suggestions."""
sentence_lower = sentence.lower()
if any(word in sentence_lower for word in ['critical', 'essential', 'must', 'urgent']):
return "high"
elif any(word in sentence_lower for word in ['should', 'important', 'recommend']):
return "medium"
else:
return "low"
def _estimate_effort(self, sentence: str) -> str:
"""Estimate effort required for improvement."""
sentence_lower = sentence.lower()
if any(word in sentence_lower for word in ['simple', 'easy', 'quick', 'minor']):
return "low"
elif any(word in sentence_lower for word in ['moderate', 'some', 'reasonable']):
return "medium"
elif any(word in sentence_lower for word in ['significant', 'substantial', 'major']):
return "high"
else:
return "medium"
def _calculate_quality_score(self, content: str) -> Dict[str, float]:
"""Calculate detailed quality scores."""
scores = self.evaluation_rubric.copy()
content_lower = content.lower()
# Score each criterion based on content analysis
for criterion in self.evaluation_criteria:
score = 0.5 # Base score
# Positive indicators
if criterion in content_lower and any(word in content_lower for word in ['good', 'strong', 'excellent']):
score += 0.3
# Negative indicators
if criterion in content_lower and any(word in content_lower for word in ['poor', 'weak', 'lacking']):
score -= 0.3
scores[criterion]["score"] = max(0.0, min(1.0, score))
# Calculate overall score
overall = sum(scores[c]["score"] * scores[c]["weight"] for c in scores)
return {
"overall": overall,
"breakdown": {c: scores[c]["score"] for c in scores},
"grade": self._convert_to_grade(overall)
}
def _convert_to_grade(self, score: float) -> str:
"""Convert numeric score to letter grade."""
if score >= 0.9:
return "A"
elif score >= 0.8:
return "B"
elif score >= 0.7:
return "C"
elif score >= 0.6:
return "D"
else:
return "F"
def _identify_alternatives(self, content: str) -> List[str]:
"""Identify alternative perspectives mentioned."""
alternatives = []
alternative_indicators = ['alternatively', 'another perspective', 'different approach',
'could also', 'different view', 'alternative']
sentences = content.split('.')
for sentence in sentences:
sentence_lower = sentence.lower()
if any(indicator in sentence_lower for indicator in alternative_indicators):
alternatives.append(sentence.strip() + '.')
return alternatives[:4]
def _generate_verdict(self, content: str) -> Dict[str, str]:
"""Generate final verdict based on evaluation."""
# Simple verdict generation based on content sentiment
positive_count = sum(content.lower().count(word) for word in ['good', 'strong', 'excellent', 'effective'])
negative_count = sum(content.lower().count(word) for word in ['poor', 'weak', 'lacking', 'insufficient'])
if positive_count > negative_count * 2:
verdict = "Approved with minor revisions"
confidence = "high"
elif positive_count > negative_count:
verdict = "Approved with moderate revisions"
confidence = "medium"
else:
verdict = "Requires significant improvements"
confidence = "medium"
return {
"verdict": verdict,
"confidence": confidence,
"summary": "Based on comprehensive evaluation across multiple criteria."
}
class SynthesizerAgent(BaseAgent):
"""Agent specialized in synthesizing information and creating coherent narratives."""
def __init__(self, name: str, llm: Optional[ChatOpenAI] = None):
super().__init__(name, AgentRole.SYNTHESIZER, llm)
self.synthesis_strategies = ["integrate", "summarize", "reconcile", "consolidate", "harmonize"]
self.output_formats = ["executive_summary", "detailed_report", "action_plan", "strategic_recommendation"]
async def _execute_task(self, task: Task) -> Any:
"""Execute synthesis task."""
# Gather all relevant information from previous agents
synthesis_input = self._gather_synthesis_input(task)
prompt = ChatPromptTemplate.from_messages([
SystemMessage(content="""You are a Synthesizer Agent specializing in integrating diverse information.
Your role is to:
1. Combine multiple perspectives into coherent narratives
2. Resolve contradictions and find common ground
3. Create comprehensive summaries that capture key insights
4. Generate actionable conclusions and recommendations
5. Ensure clarity and accessibility of complex information
6. Prioritize information based on relevance and impact
7. Create structured outputs suitable for decision-making"""),
HumanMessage(content=f"Synthesize the following information: {task.description}\n\nInput data: {synthesis_input}")
])
response = await self.llm.ainvoke(prompt.format_messages())
# Structure synthesis results
synthesis_result = {
"synthesis": response.content,
"key_themes": self._extract_themes(response.content),
"consensus_points": self._identify_consensus(response.content),
"contradictions": self._identify_contradictions(response.content),
"final_recommendations": self._generate_final_recommendations(response.content),
"executive_summary": self._create_executive_summary(response.content),
"action_items": self._extract_action_items(response.content),
"confidence_level": self._assess_synthesis_confidence(response.content)
}
# Store synthesis for future reference
self.memory.update_context('latest_synthesis', synthesis_result)
return synthesis_result
def _gather_synthesis_input(self, task: Task) -> str:
"""Gather all relevant information for synthesis."""
input_sections = []
# Get findings from all agents
agent_findings = {}
for msg in self.memory.get_recent_messages(20):
if msg.sender not in agent_findings:
agent_findings[msg.sender] = []
agent_findings[msg.sender].append(msg.content[:500])
# Structure input by agent type
for agent, findings in agent_findings.items():
if findings:
input_sections.append(f"\n{agent} Contributions:\n" + "\n".join(findings[:3]))
# Add knowledge base insights
knowledge_items = []
for key, knowledge in self.memory.knowledge_base.items():
knowledge_items.append(f"{knowledge['type'].title()}: {knowledge['content'][:200]}...")
if knowledge_items:
input_sections.append("\nKnowledge Base:\n" + "\n".join(knowledge_items[:5]))
return "\n".join(input_sections)
def _extract_themes(self, content: str) -> List[Dict[str, Any]]:
"""Extract major themes from synthesis."""
themes = []
theme_indicators = ['theme', 'pattern', 'trend', 'common', 'recurring',
'central', 'key finding', 'main point']
# Split into paragraphs and analyze
paragraphs = content.split('\n\n')
theme_count = 0
for paragraph in paragraphs:
paragraph_lower = paragraph.lower()
if any(indicator in paragraph_lower for indicator in theme_indicators):
theme_count += 1
themes.append({
"theme": f"Theme {theme_count}",
"description": paragraph.strip()[:300] + "..." if len(paragraph) > 300 else paragraph.strip(),
"importance": self._assess_theme_importance(paragraph),
"support_level": self._assess_support_level(paragraph)
})
# If no explicit themes found, extract from content structure
if not themes and paragraphs:
for i, paragraph in enumerate(paragraphs[:5]):
if len(paragraph.strip()) > 50:
themes.append({
"theme": f"Finding {i+1}",
"description": paragraph.strip()[:300] + "..." if len(paragraph) > 300 else paragraph.strip(),
"importance": "medium",
"support_level": "moderate"
})
return themes[:6]
def _assess_theme_importance(self, content: str) -> str:
"""Assess the importance of a theme."""
content_lower = content.lower()
high_importance_indicators = ['critical', 'essential', 'fundamental', 'crucial', 'vital']
if any(indicator in content_lower for indicator in high_importance_indicators):
return "high"
low_importance_indicators = ['minor', 'secondary', 'marginal', 'peripheral']
if any(indicator in content_lower for indicator in low_importance_indicators):
return "low"
return "medium"
def _assess_support_level(self, content: str) -> str:
"""Assess the level of support for a theme."""
content_lower = content.lower()
strong_support = ['consensus', 'unanimous', 'clear evidence', 'strongly supported']
if any(indicator in content_lower for indicator in strong_support):
return "strong"
weak_support = ['limited evidence', 'some indication', 'preliminary', 'tentative']
if any(indicator in content_lower for indicator in weak_support):
return "weak"
return "moderate"
def _identify_consensus(self, content: str) -> List[Dict[str, str]]:
"""Identify points of consensus."""
consensus_points = []
consensus_indicators = ['agree', 'consensus', 'common', 'shared', 'unanimous',
'consistent', 'alignment', 'convergence']
sentences = content.split('.')
for sentence in sentences:
sentence_lower = sentence.lower()
if any(indicator in sentence_lower for indicator in consensus_indicators):
consensus_points.append({
"point": sentence.strip() + '.',
"strength": "strong" if "unanimous" in sentence_lower or "clear consensus" in sentence_lower else "moderate"
})
return consensus_points[:6]
def _identify_contradictions(self, content: str) -> List[Dict[str, str]]:
"""Identify contradictions or conflicts."""
contradictions = []
conflict_indicators = ['however', 'contrary', 'conflict', 'disagree', 'opposing',
'contradicts', 'tension', 'divergent', 'inconsistent']
sentences = content.split('.')
for sentence in sentences:
sentence_lower = sentence.lower()
if any(indicator in sentence_lower for indicator in conflict_indicators):
contradictions.append({
"contradiction": sentence.strip() + '.',
"resolution_suggested": self._check_for_resolution(sentence),
"impact": self._assess_contradiction_impact(sentence)
})
return contradictions[:4]
def _check_for_resolution(self, sentence: str) -> bool:
"""Check if a resolution is suggested for the contradiction."""
resolution_indicators = ['can be resolved', 'reconcile', 'bridge', 'common ground', 'compromise']
return any(indicator in sentence.lower() for indicator in resolution_indicators)
def _assess_contradiction_impact(self, sentence: str) -> str:
"""Assess the impact of a contradiction."""
sentence_lower = sentence.lower()
if any(word in sentence_lower for word in ['fundamental', 'major', 'significant']):
return "high"
elif any(word in sentence_lower for word in ['minor', 'small', 'slight']):
return "low"
else:
return "medium"
def _generate_final_recommendations(self, content: str) -> List[Dict[str, Any]]:
"""Generate final synthesized recommendations."""
recommendations = []
# Extract recommendation sentences
rec_indicators = ['recommend', 'suggest', 'propose', 'advise', 'should', 'must']
sentences = content.split('.')
for sentence in sentences:
sentence_lower = sentence.lower()
if any(indicator in sentence_lower for indicator in rec_indicators):
recommendations.append({
"recommendation": sentence.strip() + '.',
"priority": self._determine_priority(sentence),
"timeframe": self._determine_timeframe(sentence),
"category": self._categorize_recommendation(sentence)
})
# Sort by priority
priority_order = {"high": 0, "medium": 1, "low": 2}
recommendations.sort(key=lambda x: priority_order.get(x["priority"], 3))
return recommendations[:8]
def _determine_priority(self, sentence: str) -> str:
"""Determine recommendation priority."""
sentence_lower = sentence.lower()
if any(word in sentence_lower for word in ['urgent', 'immediate', 'critical', 'must']):
return "high"
elif any(word in sentence_lower for word in ['should', 'important', 'recommend']):
return "medium"
else:
return "low"
def _determine_timeframe(self, sentence: str) -> str:
"""Determine recommendation timeframe."""
sentence_lower = sentence.lower()
if any(word in sentence_lower for word in ['immediate', 'now', 'urgent', 'asap']):
return "immediate"
elif any(word in sentence_lower for word in ['short-term', 'soon', 'near']):
return "short-term"
elif any(word in sentence_lower for word in ['long-term', 'future', 'eventually']):
return "long-term"
else:
return "medium-term"
def _categorize_recommendation(self, sentence: str) -> str:
"""Categorize the type of recommendation."""
sentence_lower = sentence.lower()
if any(word in sentence_lower for word in ['strategy', 'strategic', 'plan']):
return "strategic"
elif any(word in sentence_lower for word in ['operational', 'process', 'procedure']):
return "operational"
elif any(word in sentence_lower for word in ['tactical', 'action', 'implement']):
return "tactical"
else:
return "general"
def _create_executive_summary(self, content: str) -> str:
"""Create an executive summary of the synthesis."""
# Extract key sentences for summary
summary_parts = []
# Get opening statement
paragraphs = content.split('\n\n')
if paragraphs:
opening = paragraphs[0][:200]
if len(paragraphs[0]) > 200:
opening += "..."
summary_parts.append(opening)
# Extract key findings
key_finding_indicators = ['key finding', 'main conclusion', 'importantly', 'notably']
for paragraph in paragraphs[1:]:
if any(indicator in paragraph.lower() for indicator in key_finding_indicators):
summary_parts.append(paragraph[:150] + "..." if len(paragraph) > 150 else paragraph)
if len(summary_parts) >= 3:
break
# Add conclusion if present
if len(paragraphs) > 1:
conclusion = paragraphs[-1][:150]
if conclusion not in summary_parts:
summary_parts.append(conclusion + "..." if len(paragraphs[-1]) > 150 else conclusion)
return " ".join(summary_parts)
def _extract_action_items(self, content: str) -> List[Dict[str, str]]:
"""Extract specific action items from synthesis."""
action_items = []
action_indicators = ['action:', 'task:', 'todo:', 'action item', 'next step', 'to do']
lines = content.split('\n')
for line in lines:
line_lower = line.lower()
if any(indicator in line_lower for indicator in action_indicators):
action_items.append({
"action": line.strip(),
"owner": "TBD",
"deadline": "TBD",
"status": "pending"
})
# Also check for numbered action items
elif line.strip() and line.strip()[0].isdigit() and 'action' in line_lower:
action_items.append({
"action": line.strip(),
"owner": "TBD",
"deadline": "TBD",
"status": "pending"
})
return action_items[:10]
def _assess_synthesis_confidence(self, content: str) -> Dict[str, Any]:
"""Assess confidence in the synthesis."""
# Calculate various confidence indicators
word_count = len(content.split())
# Check for confidence language
high_confidence_words = ['clear', 'strong', 'definitive', 'conclusive', 'certain']
low_confidence_words = ['uncertain', 'unclear', 'tentative', 'preliminary', 'limited']
high_conf_count = sum(content.lower().count(word) for word in high_confidence_words)
low_conf_count = sum(content.lower().count(word) for word in low_confidence_words)
# Calculate confidence score
base_confidence = 0.7
confidence_adjustment = (high_conf_count * 0.05) - (low_conf_count * 0.08)
overall_confidence = max(0.3, min(0.95, base_confidence + confidence_adjustment))
return {
"overall": overall_confidence,
"level": "high" if overall_confidence > 0.8 else "medium" if overall_confidence > 0.6 else "low",
"factors": {
"content_depth": word_count > 500,
"evidence_strength": high_conf_count > low_conf_count,
"consensus_level": "consensus" in content.lower()
}
}
class CoordinatorAgent(BaseAgent):
"""Agent responsible for coordinating other agents and managing workflow."""
def __init__(self, name: str, llm: Optional[ChatOpenAI] = None):
super().__init__(name, AgentRole.COORDINATOR, llm)
self.agents: Dict[str, BaseAgent] = {}
self.task_queue: List[Task] = []
self.completed_tasks: List[Task] = []
self.workflow_graph = nx.DiGraph()
self.execution_history: List[Dict[str, Any]] = []
self.workflow_templates = self._create_workflow_templates()
self.collaboration_network = nx.Graph()
def _create_workflow_templates(self) -> Dict[str, List[Dict[str, Any]]]:
"""Create predefined workflow templates for common problem types."""
return {
"research_analysis": [
{"role": "Researcher", "task": "Gather comprehensive information"},
{"role": "Analyst", "task": "Analyze findings and identify patterns"},
{"role": "Critic", "task": "Evaluate analysis quality"},
{"role": "Synthesizer", "task": "Create final recommendations"}
],
"strategic_planning": [
{"role": "Researcher", "task": "Research current state and trends"},
{"role": "Analyst", "task": "SWOT analysis and opportunity identification"},
{"role": "Researcher", "task": "Benchmark best practices"},
{"role": "Critic", "task": "Risk assessment and gap analysis"},
{"role": "Synthesizer", "task": "Strategic plan synthesis"}
],
"problem_solving": [
{"role": "Researcher", "task": "Define problem and gather context"},
{"role": "Analyst", "task": "Root cause analysis"},
{"role": "Researcher", "task": "Research potential solutions"},
{"role": "Critic", "task": "Evaluate solution feasibility"},
{"role": "Synthesizer", "task": "Recommend optimal solution"}
]
}
def register_agent(self, agent: BaseAgent):
"""Register an agent with the coordinator."""
self.agents[agent.name] = agent
self.workflow_graph.add_node(agent.name, role=agent.role.value)
self.collaboration_network.add_node(agent.name, role=agent.role.value)
logger.info(f"Registered agent: {agent.name} with role {agent.role.value}")
async def decompose_problem(self, problem: str, use_template: bool = False) -> List[Task]:
"""Decompose a complex problem into subtasks."""
if use_template:
# Try to match problem to a template
template_tasks = self._match_problem_to_template(problem)
if template_tasks:
return template_tasks
if self.llm:
# Use LLM to decompose problem
prompt = ChatPromptTemplate.from_messages([
SystemMessage(content="""You are a Coordinator Agent responsible for breaking down complex problems.
Decompose the problem into specific subtasks that can be assigned to specialized agents:
- Researcher: For gathering information and facts
- Analyst: For analyzing data and identifying patterns
- Critic: For evaluating quality and identifying issues
- Synthesizer: For combining insights and creating summaries
Create 4-8 clear, actionable subtasks with dependencies.
Format each task as: [Role]: [Specific task description]"""),
HumanMessage(content=f"Decompose this problem into subtasks: {problem}")
])
response = await self.llm.ainvoke(prompt.format_messages())
tasks = self._parse_tasks(response.content, problem)
else:
# Demo mode - use template or default decomposition
tasks = self._create_default_tasks(problem)
# Enhance tasks with metadata
for i, task in enumerate(tasks):
task.metadata['problem_complexity'] = self._assess_problem_complexity(problem)
task.metadata['estimated_duration'] = self._estimate_task_duration(task)
return tasks
def _match_problem_to_template(self, problem: str) -> Optional[List[Task]]:
"""Match problem to a workflow template."""
problem_lower = problem.lower()
# Check for template matches
if any(word in problem_lower for word in ['strategy', 'strategic', 'plan']):
template_name = "strategic_planning"
elif any(word in problem_lower for word in ['research', 'analyze', 'investigate']):
template_name = "research_analysis"
elif any(word in problem_lower for word in ['problem', 'solve', 'solution', 'fix']):
template_name = "problem_solving"
else:
return None
# Create tasks from template
template = self.workflow_templates[template_name]
tasks = []
for i, step in enumerate(template):
task = Task(
id=f"task_{i+1}",
description=f"{step['task']} for: {problem}",
metadata={
"original_problem": problem,
"suggested_role": step['role'],
"template": template_name
}
)
tasks.append(task)
return tasks
def _assess_problem_complexity(self, problem: str) -> str:
"""Assess the complexity of a problem."""
# Simple heuristic based on problem characteristics
complexity_indicators = {
"high": ['multiple', 'complex', 'comprehensive', 'strategic', 'long-term'],
"medium": ['analyze', 'evaluate', 'develop', 'assess'],
"low": ['simple', 'basic', 'straightforward', 'identify']
}
problem_lower = problem.lower()
for level, indicators in complexity_indicators.items():
if any(indicator in problem_lower for indicator in indicators):
return level
# Default based on length
return "high" if len(problem) > 200 else "medium"
def _estimate_task_duration(self, task: Task) -> float:
"""Estimate task duration in seconds."""
# Base estimation on task characteristics
base_duration = 30.0
# Adjust based on role
role_multipliers = {
"Researcher": 1.2,
"Analyst": 1.5,
"Critic": 1.0,
"Synthesizer": 1.3
}
role = task.metadata.get("suggested_role", "Researcher")
duration = base_duration * role_multipliers.get(role, 1.0)
# Adjust based on complexity
complexity = task.metadata.get("problem_complexity", "medium")
if complexity == "high":
duration *= 1.5
elif complexity == "low":
duration *= 0.7
return duration
def _parse_tasks(self, content: str, original_problem: str) -> List[Task]:
"""Parse LLM response into Task objects."""
tasks = []
lines = content.split('\n')
task_id = 1
current_role = None
for line in lines:
line = line.strip()
if not line:
continue
# Check for role indicators
role_found = False
for role in AgentRole:
if role.value in line or role.value.lower() in line.lower():
current_role = role.value
role_found = True
break
# Extract task if we have a role
if current_role and ':' in line:
# Extract task description after role mention
task_parts = line.split(':', 1)
if len(task_parts) > 1:
task_desc = task_parts[1].strip()
task = Task(
id=f"task_{task_id}",
description=task_desc,
metadata={
"original_problem": original_problem,
"suggested_role": current_role,
"source": "llm_decomposition"
}
)
tasks.append(task)
task_id += 1
# Ensure we have at least some tasks
if len(tasks) < 4:
tasks.extend(self._create_default_tasks(original_problem)[len(tasks):])
return tasks
def _create_default_tasks(self, problem: str) -> List[Task]:
"""Create default tasks for a problem."""
return [
Task(
id="task_1",
description=f"Research comprehensive background information on: {problem}",
metadata={"suggested_role": "Researcher", "source": "default"}
),
Task(
id="task_2",
description=f"Analyze key factors and patterns related to: {problem}",
metadata={"suggested_role": "Analyst", "source": "default"}
),
Task(
id="task_3",
description="Critically evaluate the research findings and analysis quality",
metadata={"suggested_role": "Critic", "source": "default"}
),
Task(
id="task_4",
description="Synthesize all findings into actionable insights and recommendations",
metadata={"suggested_role": "Synthesizer", "source": "default"}
)
]
def _build_dependency_graph(self, tasks: List[Task]):
"""Build a dependency graph for tasks."""
# Define role execution order
role_order = {
"Researcher": 1,
"Analyst": 2,
"Critic": 3,
"Synthesizer": 4
}
# Sort tasks by role order
sorted_tasks = sorted(tasks,
key=lambda t: role_order.get(t.metadata.get("suggested_role", "Researcher"), 5))
# Create dependencies based on order
for i in range(len(sorted_tasks) - 1):
current_task = sorted_tasks[i]
next_task = sorted_tasks[i + 1]
# Only add dependency if next task has higher order role
current_order = role_order.get(current_task.metadata.get("suggested_role"), 0)
next_order = role_order.get(next_task.metadata.get("suggested_role"), 0)
if next_order >= current_order:
next_task.dependencies.append(current_task.id)
async def execute_workflow(self, tasks: List[Task], parallel: bool = True) -> Dict[str, Any]:
"""Execute the workflow with given tasks."""
start_time = datetime.now()
self.performance_tracker.start_tracking()
# Build task dependency graph
self._build_dependency_graph(tasks)
# Update workflow graph
self._update_workflow_graph(tasks)
# Execute tasks
try:
if parallel:
await self._execute_parallel(tasks)
else:
await self._execute_sequential(tasks)
except Exception as e:
logger.error(f"Workflow execution error: {str(e)}")
# Compile final results
end_time = datetime.now()
self.performance_tracker.end_tracking()
execution_time = (end_time - start_time).total_seconds()
# Update collaboration network
self._update_collaboration_network()
workflow_result = {
"tasks": tasks,
"execution_time": execution_time,
"success_rate": self._calculate_success_rate(tasks),
"agent_contributions": self._compile_agent_contributions(tasks),
"workflow_graph": self.collaboration_network, # Use collaboration network instead
"performance_metrics": self.performance_tracker.get_performance_summary(),
"timestamp": datetime.now()
}
self.execution_history.append(workflow_result)
return workflow_result
def _update_workflow_graph(self, tasks: List[Task]):
"""Update the workflow graph with task relationships."""
# Add task nodes
for task in tasks:
self.workflow_graph.add_node(
task.id,
task_description=task.description[:50] + "...",
status=task.status.value
)
# Add edges for dependencies
for task in tasks:
for dep_id in task.dependencies:
self.workflow_graph.add_edge(dep_id, task.id)
def _update_collaboration_network(self):
"""Update the collaboration network based on agent interactions."""
# Add collaboration edges between agents
agent_names = list(self.agents.keys())
# Create edges based on workflow patterns
if len(agent_names) >= 4:
# Research -> Analyst
if "Researcher-1" in agent_names and "Analyst-1" in agent_names:
self.collaboration_network.add_edge("Researcher-1", "Analyst-1", weight=3)
# Analyst -> Critic
if "Analyst-1" in agent_names and "Critic-1" in agent_names:
self.collaboration_network.add_edge("Analyst-1", "Critic-1", weight=2)
# Critic -> Synthesizer
if "Critic-1" in agent_names and "Synthesizer-1" in agent_names:
self.collaboration_network.add_edge("Critic-1", "Synthesizer-1", weight=2)
# Research -> Synthesizer (direct connection)
if "Researcher-1" in agent_names and "Synthesizer-1" in agent_names:
self.collaboration_network.add_edge("Researcher-1", "Synthesizer-1", weight=1)
async def _execute_parallel(self, tasks: List[Task]) -> List[Task]:
"""Execute tasks in parallel where possible."""
completed = set()
pending = tasks.copy()
with ThreadPoolExecutor(max_workers=len(self.agents)) as executor:
while pending:
# Find tasks ready for execution
ready_tasks = [
task for task in pending
if all(dep in completed for dep in task.dependencies)
]
if not ready_tasks:
# Handle potential deadlock
logger.warning("No ready tasks found, executing first pending task")
ready_tasks = [pending[0]] if pending else []
if not ready_tasks:
break
# Submit tasks for parallel execution
future_to_task = {}
for task in ready_tasks:
agent_name = self._select_agent_for_task(task)
if agent_name and agent_name in self.agents:
agent = self.agents[agent_name]
future = executor.submit(asyncio.run, agent.process_task(task))
future_to_task[future] = (task, agent_name)
# Wait for tasks to complete
for future in as_completed(future_to_task):
task, agent_name = future_to_task[future]
try:
completed_task = future.result()
completed.add(task.id)
pending.remove(task)
self.completed_tasks.append(completed_task)
# Update workflow graph
self.workflow_graph.add_edge(
self.name, agent_name,
task_id=task.id,
timestamp=datetime.now().isoformat()
)
# Record collaboration
await self._facilitate_collaboration(completed_task, agent_name)
except Exception as e:
logger.error(f"Task {task.id} failed: {str(e)}")
task.status = TaskStatus.FAILED
return tasks
async def _execute_sequential(self, tasks: List[Task]) -> List[Task]:
"""Execute tasks sequentially."""
for task in tasks:
agent_name = self._select_agent_for_task(task)
if agent_name and agent_name in self.agents:
agent = self.agents[agent_name]
completed_task = await agent.process_task(task)
# Update workflow graph
self.workflow_graph.add_edge(
self.name, agent_name,
task_id=task.id,
timestamp=datetime.now().isoformat()
)
self.completed_tasks.append(completed_task)
# Facilitate collaboration
await self._facilitate_collaboration(completed_task, agent_name)
return tasks
def _select_agent_for_task(self, task: Task) -> Optional[str]:
"""Select the best agent for a given task."""
suggested_role = task.metadata.get("suggested_role")
# Find agent with matching role
for agent_name, agent in self.agents.items():
if agent.role.value == suggested_role:
# Check agent availability
if agent.active and agent.current_task is None:
return agent_name
# Fallback: find any available agent with the role
for agent_name, agent in self.agents.items():
if agent.role.value == suggested_role:
return agent_name
# Last resort: return any available agent
for agent_name, agent in self.agents.items():
if agent.active:
return agent_name
return None
async def _facilitate_collaboration(self, task: Task, agent_name: str):
"""Facilitate collaboration between agents after task completion."""
if not task.result or task.status != TaskStatus.COMPLETED:
return
# Create collaboration message
collab_message = AgentMessage(
sender=agent_name,
recipient="all",
content=f"Task completed: {task.description}\nKey findings: {str(task.result)[:500]}",
message_type=MessageType.COMPLETION_REPORT,
priority=3
)
# Share with relevant agents
shared_count = 0
for other_agent_name, other_agent in self.agents.items():
if other_agent_name != agent_name:
# Determine if collaboration is needed
if self._should_collaborate(task, other_agent):
await other_agent.memory.add_message(collab_message)
self.performance_tracker.record_collaboration()
self.performance_tracker.record_message()
shared_count += 1
# Log collaboration activity
if shared_count > 0:
logger.info(f"Agent {agent_name} shared findings with {shared_count} other agents")
def _should_collaborate(self, task: Task, agent: BaseAgent) -> bool:
"""Determine if an agent should receive collaboration message."""
# Synthesizer should receive all completion reports
if agent.role == AgentRole.SYNTHESIZER:
return True
# Critic should receive analysis and research results
if agent.role == AgentRole.CRITIC and task.metadata.get("suggested_role") in ["Researcher", "Analyst"]:
return True
# Analyst should receive research results
if agent.role == AgentRole.ANALYST and task.metadata.get("suggested_role") == "Researcher":
return True
return False
def _calculate_success_rate(self, tasks: List[Task]) -> float:
"""Calculate the success rate of task execution."""
if not tasks:
return 0.0
successful = sum(1 for task in tasks if task.status == TaskStatus.COMPLETED)
return successful / len(tasks)
def _compile_agent_contributions(self, tasks: List[Task]) -> Dict[str, Any]:
"""Compile contributions from each agent."""
contributions = {}
for agent_name, agent in self.agents.items():
agent_tasks = [task for task in tasks if task.assigned_to == agent_name]
if agent_tasks:
total_execution_time = sum(
task.performance_metrics.get('execution_time', 0)
for task in agent_tasks
)
avg_confidence = np.mean([task.confidence for task in agent_tasks])
contributions[agent_name] = {
"role": agent.role.value,
"tasks_completed": len(agent_tasks),
"average_confidence": avg_confidence,
"total_execution_time": total_execution_time,
"collaboration_count": len(agent.collaboration_partners),
"status": agent.get_status_summary()
}
else:
contributions[agent_name] = {
"role": agent.role.value,
"tasks_completed": 0,
"average_confidence": 0.0,
"total_execution_time": 0.0,
"collaboration_count": 0,
"status": agent.get_status_summary()
}
return contributions
def get_workflow_insights(self) -> Dict[str, Any]:
"""Get insights about workflow execution patterns."""
if not self.execution_history:
return {"message": "No execution history available"}
# Analyze execution patterns
total_executions = len(self.execution_history)
avg_execution_time = np.mean([wf['execution_time'] for wf in self.execution_history])
avg_success_rate = np.mean([wf['success_rate'] for wf in self.execution_history])
# Analyze agent performance
agent_stats = {}
for workflow in self.execution_history:
for agent, contrib in workflow['agent_contributions'].items():
if agent not in agent_stats:
agent_stats[agent] = {
'total_tasks': 0,
'total_time': 0,
'confidence_scores': []
}
agent_stats[agent]['total_tasks'] += contrib['tasks_completed']
agent_stats[agent]['total_time'] += contrib['total_execution_time']
if contrib['average_confidence'] > 0:
agent_stats[agent]['confidence_scores'].append(contrib['average_confidence'])
# Calculate agent efficiency
agent_efficiency = {}
for agent, stats in agent_stats.items():
if stats['total_tasks'] > 0:
agent_efficiency[agent] = {
'avg_time_per_task': stats['total_time'] / stats['total_tasks'],
'avg_confidence': np.mean(stats['confidence_scores']) if stats['confidence_scores'] else 0,
'total_tasks': stats['total_tasks']
}
return {
'total_workflows_executed': total_executions,
'average_execution_time': avg_execution_time,
'average_success_rate': avg_success_rate,
'agent_efficiency': agent_efficiency,
'most_efficient_agent': min(agent_efficiency.items(),
key=lambda x: x[1]['avg_time_per_task'])[0] if agent_efficiency else None,
'highest_quality_agent': max(agent_efficiency.items(),
key=lambda x: x[1]['avg_confidence'])[0] if agent_efficiency else None
}
class WorkflowVisualizer:
"""Handles visualization of agent interactions and workflow."""
def __init__(self):
self.color_map = Config.NODE_COLORS
self.layout_cache = {}
self.animation_frames = []
def create_workflow_graph(self, workflow_graph: nx.Graph,
active_agents: List[str] = None,
highlight_tasks: List[str] = None) -> go.Figure:
"""Create an interactive workflow visualization."""
if len(workflow_graph.nodes()) == 0:
return self._create_empty_graph()
# Use spring layout for better visualization of connections
pos = nx.spring_layout(workflow_graph, k=2, iterations=50)
# Create traces
edge_trace = self._create_edge_trace(workflow_graph, pos)
node_trace = self._create_node_trace(workflow_graph, pos, active_agents, highlight_tasks)
# Create figure
fig = go.Figure(
data=[edge_trace, node_trace],
layout=go.Layout(
title={
'text': 'Agent Collaboration Network',
'x': 0.5,
'xanchor': 'center',
'font': {'size': 16, 'color': '#2c3e50'}
},
showlegend=False,
hovermode='closest',
margin=dict(b=40, l=40, r=40, t=60),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
plot_bgcolor='#f8f9fa',
paper_bgcolor='white',
font=dict(family='Inter, sans-serif'),
)
)
return fig
def _create_empty_graph(self) -> go.Figure:
"""Create empty graph with message."""
fig = go.Figure()
fig.add_annotation(
text="No workflow data to display.<br>Start an analysis to see agent interactions.",
xref="paper", yref="paper",
x=0.5, y=0.5,
showarrow=False,
font=dict(size=16, color='#7f8c8d'),
bgcolor='#ecf0f1',
borderpad=20
)
fig.update_layout(
height=500,
plot_bgcolor='#f8f9fa',
paper_bgcolor='white'
)
return fig
def _create_edge_trace(self, G: nx.Graph, pos: Dict) -> go.Scatter:
"""Create edge trace for the graph."""
edge_x = []
edge_y = []
for edge in G.edges():
if edge[0] in pos and edge[1] in pos:
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_x.extend([x0, x1, None])
edge_y.extend([y0, y1, None])
edge_trace = go.Scatter(
x=edge_x, y=edge_y,
line=dict(width=2, color='#95a5a6'),
hoverinfo='none',
mode='lines'
)
return edge_trace
def _create_node_trace(self, G: nx.Graph, pos: Dict,
active_agents: List[str] = None,
highlight_tasks: List[str] = None) -> go.Scatter:
"""Create node trace for the graph."""
node_x = []
node_y = []
node_colors = []
node_sizes = []
node_text = []
for node in G.nodes():
if node in pos:
x, y = pos[node]
node_x.append(x)
node_y.append(y)
# Get node attributes
node_data = G.nodes[node]
role = node_data.get('role', '')
# Set node properties
color = self.color_map.get(role, '#95a5a6')
size = 40
node_colors.append(color)
node_sizes.append(size)
node_text.append(node)
node_trace = go.Scatter(
x=node_x, y=node_y,
mode='markers+text',
hoverinfo='text',
text=node_text,
hovertext=node_text,
textposition="bottom center",
marker=dict(
showscale=False,
color=node_colors,
size=node_sizes,
line=dict(color='white', width=2)
)
)
return node_trace
def create_task_timeline(self, tasks: List[Task]) -> go.Figure:
"""Create a timeline visualization of task execution."""
# Prepare timeline data
timeline_data = []
for task in tasks:
if task.created_at:
# Use completed_at if available, otherwise estimate
end_time = task.completed_at if task.completed_at else task.created_at + timedelta(seconds=30)
timeline_data.append({
'Task': task.id,
'Agent': task.assigned_to or 'Unassigned',
'Start': task.created_at,
'Finish': end_time,
'Status': task.status.value,
'Confidence': task.confidence
})
if not timeline_data:
return self._create_empty_timeline()
# Create DataFrame
df = pd.DataFrame(timeline_data)
# Create Gantt chart
fig = px.timeline(
df,
x_start="Start",
x_end="Finish",
y="Agent",
color="Confidence",
hover_data=["Task", "Status"],
color_continuous_scale="Viridis",
labels={'Confidence': 'Confidence Score'}
)
# Update layout
fig.update_layout(
title={
'text': 'Task Execution Timeline',
'x': 0.5,
'xanchor': 'center',
'font': {'size': 18, 'color': '#2c3e50'}
},
height=400,
xaxis_title="Time",
yaxis_title="Agent",
plot_bgcolor='#f8f9fa',
paper_bgcolor='white',
font=dict(family='Inter, sans-serif'),
yaxis={'categoryorder': 'total ascending'}
)
return fig
def _create_empty_timeline(self) -> go.Figure:
"""Create empty timeline with message."""
fig = go.Figure()
fig.add_annotation(
text="No task execution data available yet.",
xref="paper", yref="paper",
x=0.5, y=0.5,
showarrow=False,
font=dict(size=14, color='#7f8c8d')
)
fig.update_layout(
height=400,
plot_bgcolor='#f8f9fa',
paper_bgcolor='white'
)
return fig
def create_confidence_heatmap(self, agent_contributions: Dict[str, Any]) -> go.Figure:
"""Create a heatmap showing agent performance metrics."""
if not agent_contributions:
return self._create_empty_heatmap()
# Prepare data
agents = list(agent_contributions.keys())
metrics = ['Tasks Completed', 'Avg Confidence', 'Time Efficiency', 'Collaboration Score']
# Create data matrix
data = []
for metric in metrics:
row = []
for agent in agents:
contrib = agent_contributions[agent]
if metric == 'Tasks Completed':
value = contrib.get('tasks_completed', 0) / 5.0 # Normalize to 0-1
elif metric == 'Avg Confidence':
value = contrib.get('average_confidence', 0)
elif metric == 'Time Efficiency':
# Inverse of average time per task, normalized
time = contrib.get('total_execution_time', 1)
tasks = contrib.get('tasks_completed', 1)
avg_time = time / tasks if tasks > 0 else float('inf')
value = min(1.0, 30.0 / avg_time) if avg_time > 0 else 0
elif metric == 'Collaboration Score':
value = min(1.0, contrib.get('collaboration_count', 0) / 3.0)
else:
value = 0
row.append(value)
data.append(row)
# Create heatmap
fig = go.Figure(data=go.Heatmap(
z=data,
x=agents,
y=metrics,
colorscale='Blues',
text=np.round(data, 2),
texttemplate='%{text}',
textfont={"size": 12},
colorbar=dict(title={'text': "Score", 'side': 'right'}),
hoverongaps=False
))
# Update layout
fig.update_layout(
title={
'text': 'Agent Performance Metrics',
'x': 0.5,
'xanchor': 'center',
'font': {'size': 18, 'color': '#2c3e50'}
},
xaxis_title="Agents",
yaxis_title="Metrics",
height=350,
plot_bgcolor='white',
paper_bgcolor='white',
font=dict(family='Inter, sans-serif')
)
return fig
def _create_empty_heatmap(self) -> go.Figure:
"""Create empty heatmap with message."""
fig = go.Figure()
fig.add_annotation(
text="No agent performance data available yet.",
xref="paper", yref="paper",
x=0.5, y=0.5,
showarrow=False,
font=dict(size=14, color='#7f8c8d')
)
fig.update_layout(
height=350,
plot_bgcolor='#f8f9fa',
paper_bgcolor='white'
)
return fig
def create_performance_comparison(self, performance_metrics: Dict[str, Any]) -> go.Figure:
"""Create performance comparison visualization."""
# Extract metrics
baseline_time = Config.BENCHMARK_BASELINE['single_agent_time']
actual_time = performance_metrics.get('average_task_completion_time', baseline_time)
time_improvement = performance_metrics.get('time_improvement_percentage', 0)
# Create bar chart
categories = ['Single Agent', 'Multi-Agent System']
values = [baseline_time, actual_time]
colors = ['#e74c3c', '#2ecc71']
fig = go.Figure(data=[
go.Bar(
x=categories,
y=values,
marker_color=colors,
text=[f'{v:.1f}s' for v in values],
textposition='auto'
)
])
# Add improvement annotation
if time_improvement > 0:
fig.add_annotation(
x=1, y=actual_time + 5,
text=f"{time_improvement:.1f}% Faster",
showarrow=True,
arrowhead=2,
arrowsize=1,
arrowwidth=2,
arrowcolor='#2ecc71',
font=dict(size=14, color='#2ecc71', weight='bold')
)
# Update layout
fig.update_layout(
title={
'text': 'Performance Comparison',
'x': 0.5,
'xanchor': 'center',
'font': {'size': 18, 'color': '#2c3e50'}
},
yaxis_title="Average Completion Time (seconds)",
height=400,
plot_bgcolor='#f8f9fa',
paper_bgcolor='white',
font=dict(family='Inter, sans-serif'),
showlegend=False
)
return fig
class ReportGenerator:
"""Generates comprehensive PDF reports from multi-agent collaboration."""
def __init__(self):
self.styles = getSampleStyleSheet()
self.custom_styles = self._create_custom_styles()
def _create_custom_styles(self) -> Dict[str, ParagraphStyle]:
"""Create custom paragraph styles for the report."""
custom_styles = {}
# Title style
custom_styles['CustomTitle'] = ParagraphStyle(
'CustomTitle',
parent=self.styles['Heading1'],
fontSize=24,
textColor=colors.HexColor('#2c3e50'),
spaceAfter=30,
alignment=1 # Center alignment
)
# Section header style
custom_styles['SectionHeader'] = ParagraphStyle(
'SectionHeader',
parent=self.styles['Heading2'],
fontSize=16,
textColor=colors.HexColor('#34495e'),
spaceAfter=12,
spaceBefore=20
)
# Normal text style
custom_styles['CustomBody'] = ParagraphStyle(
'CustomBody',
parent=self.styles['BodyText'],
fontSize=10,
leading=14,
spaceAfter=10
)
return custom_styles
def generate_report(self,
workflow_result: Dict[str, Any],
problem_statement: str,
include_sections: List[str] = None,
filename: str = "multi_agent_analysis_report.pdf") -> str:
"""Generate comprehensive PDF report from workflow results."""
try:
# Create document
doc = SimpleDocTemplate(
filename,
pagesize=letter,
rightMargin=72,
leftMargin=72,
topMargin=72,
bottomMargin=18
)
# Container for the 'Flowable' objects
elements = []
# Title page
elements.append(Paragraph("Multi-Agent Analysis Report", self.custom_styles['CustomTitle']))
elements.append(Paragraph(Config.COMPANY_NAME, self.styles['Heading3']))
elements.append(Spacer(1, 0.2*inch))
elements.append(Paragraph(f"Generated on: {datetime.now().strftime('%B %d, %Y at %I:%M %p')}",
self.styles['Normal']))
elements.append(Spacer(1, 0.3*inch))
elements.append(Paragraph(f"<b>Problem Statement:</b> {problem_statement}",
self.custom_styles['CustomBody']))
elements.append(PageBreak())
# Add selected sections
section_methods = {
'executive_summary': self._add_executive_summary,
'task_analysis': self._add_task_analysis,
'agent_contributions': self._add_agent_contributions,
'key_findings': self._add_key_findings,
'recommendations': self._add_recommendations,
'confidence_analysis': self._add_confidence_analysis,
'performance_metrics': self._add_performance_metrics
}
if include_sections is None:
include_sections = list(section_methods.keys())
for section in include_sections:
if section in section_methods:
section_methods[section](elements, workflow_result, problem_statement)
# Footer
elements.append(PageBreak())
elements.append(Paragraph("Report Generation Details", self.custom_styles['SectionHeader']))
execution_time = workflow_result.get('execution_time', 0)
timestamp = workflow_result.get('timestamp', datetime.now())
footer_text = f"""
Analysis completed in {execution_time:.1f} seconds<br/>
Report generated at {timestamp.strftime('%B %d, %Y at %I:%M %p')}<br/>
<br/>
Powered by {Config.COMPANY_NAME}<br/>
Advanced Multi-Agent AI Collaboration System
"""
elements.append(Paragraph(footer_text, self.styles['Normal']))
# Build PDF
doc.build(elements)
return filename
except Exception as e:
logger.error(f"Error generating report: {str(e)}")
return None
def _add_executive_summary(self, elements: list, workflow_result: Dict, problem_statement: str):
"""Add executive summary section to report."""
elements.append(Paragraph("Executive Summary", self.custom_styles['SectionHeader']))
tasks = workflow_result.get('tasks', [])
success_rate = workflow_result.get('success_rate', 0)
execution_time = workflow_result.get('execution_time', 0)
performance = workflow_result.get('performance_metrics', {})
# Find synthesis task for summary content
synthesis_task = None
for task in tasks:
if task.assigned_to and 'Synthesizer' in task.assigned_to:
synthesis_task = task
break
summary_text = f"""
The multi-agent system successfully analyzed the problem through coordinated efforts of
specialized agents, achieving a <b>{success_rate:.0%} task completion rate</b> in
<b>{execution_time:.1f} seconds</b>.
"""
elements.append(Paragraph(summary_text, self.custom_styles['CustomBody']))
if synthesis_task and isinstance(synthesis_task.result, dict):
exec_summary = synthesis_task.result.get('executive_summary', '')
if exec_summary:
elements.append(Spacer(1, 0.1*inch))
elements.append(Paragraph(exec_summary, self.custom_styles['CustomBody']))
# Add performance highlights
time_improvement = performance.get('time_improvement_percentage', 0)
efficiency_score = performance.get('efficiency_score', 0)
performance_text = f"""
<br/>
<b>Key Performance Indicators:</b><br/>
• Performance Improvement: {time_improvement:.1f}% faster than single-agent approach<br/>
• System Efficiency Score: {efficiency_score:.2f}/1.0<br/>
• Total Collaborations: {performance.get('total_collaborations', 0)}<br/>
"""
elements.append(Paragraph(performance_text, self.custom_styles['CustomBody']))
elements.append(Spacer(1, 0.2*inch))
def _add_task_analysis(self, elements: list, workflow_result: Dict, problem_statement: str):
"""Add task analysis section to report."""
elements.append(Paragraph("Task Analysis", self.custom_styles['SectionHeader']))
tasks = workflow_result.get('tasks', [])
# Task overview
completed_tasks = [t for t in tasks if t.status == TaskStatus.COMPLETED]
failed_tasks = [t for t in tasks if t.status == TaskStatus.FAILED]
overview_text = f"""
<b>Task Overview:</b><br/>
• Total Tasks: {len(tasks)}<br/>
• Completed: {len(completed_tasks)}<br/>
• Failed: {len(failed_tasks)}<br/>
• Average Confidence: {np.mean([t.confidence for t in completed_tasks]) if completed_tasks else 0:.2%}<br/>
"""
elements.append(Paragraph(overview_text, self.custom_styles['CustomBody']))
elements.append(Spacer(1, 0.1*inch))
# Create task table
task_data = [['Task ID', 'Description', 'Agent', 'Status', 'Confidence']]
for task in tasks:
task_data.append([
task.id,
task.description[:50] + '...' if len(task.description) > 50 else task.description,
task.assigned_to or 'N/A',
task.status.value.title(),
f"{task.confidence:.0%}"
])
task_table = Table(task_data, colWidths=[1*inch, 2.5*inch, 1.2*inch, 1*inch, 1*inch])
task_table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (-1, 0), colors.grey),
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
('ALIGN', (0, 0), (-1, -1), 'LEFT'),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('FONTSIZE', (0, 0), (-1, -1), 9),
('BOTTOMPADDING', (0, 0), (-1, 0), 12),
('BACKGROUND', (0, 1), (-1, -1), colors.beige),
('GRID', (0, 0), (-1, -1), 1, colors.black)
]))
elements.append(task_table)
elements.append(Spacer(1, 0.2*inch))
def _add_agent_contributions(self, elements: list, workflow_result: Dict, problem_statement: str):
"""Add agent contributions section to report."""
elements.append(Paragraph("Agent Contributions", self.custom_styles['SectionHeader']))
contributions = workflow_result.get('agent_contributions', {})
for agent, stats in contributions.items():
role = stats.get('role', 'Unknown')
tasks_completed = stats.get('tasks_completed', 0)
avg_confidence = stats.get('average_confidence', 0)
exec_time = stats.get('total_execution_time', 0)
collab_count = stats.get('collaboration_count', 0)
agent_text = f"""
<b>{agent} ({role}):</b><br/>
• Tasks Completed: {tasks_completed}<br/>
• Average Confidence: {avg_confidence:.0%}<br/>
• Total Execution Time: {exec_time:.1f}s<br/>
• Collaborations: {collab_count}<br/>
"""
elements.append(Paragraph(agent_text, self.custom_styles['CustomBody']))
elements.append(Spacer(1, 0.1*inch))
def _add_key_findings(self, elements: list, workflow_result: Dict, problem_statement: str):
"""Add key findings section to report."""
elements.append(Paragraph("Key Findings", self.custom_styles['SectionHeader']))
tasks = workflow_result.get('tasks', [])
findings_by_type = {
'Research Findings': [],
'Analytical Insights': [],
'Critical Observations': [],
'Synthesized Conclusions': []
}
# Extract findings from different agent types
for task in tasks:
if task.status == TaskStatus.COMPLETED and task.result:
role = task.metadata.get('suggested_role', '')
if isinstance(task.result, dict):
if 'Researcher' in role and 'key_points' in task.result:
findings_by_type['Research Findings'].extend(task.result['key_points'][:3])
elif 'Analyst' in role and 'insights' in task.result:
findings_by_type['Analytical Insights'].extend(task.result['insights'][:3])
elif 'Critic' in role and 'strengths' in task.result:
for strength in task.result['strengths'][:2]:
if isinstance(strength, dict):
findings_by_type['Critical Observations'].append(
strength.get('strength', str(strength))
)
else:
findings_by_type['Critical Observations'].append(str(strength))
elif 'Synthesizer' in role and 'key_themes' in task.result:
for theme in task.result['key_themes'][:2]:
if isinstance(theme, dict):
findings_by_type['Synthesized Conclusions'].append(
theme.get('description', str(theme))
)
else:
findings_by_type['Synthesized Conclusions'].append(str(theme))
# Format findings
for finding_type, findings in findings_by_type.items():
if findings:
elements.append(Paragraph(f"<b>{finding_type}:</b>", self.styles['Heading4']))
for finding in findings:
elements.append(Paragraph(f"• {finding}", self.custom_styles['CustomBody']))
elements.append(Spacer(1, 0.1*inch))
def _add_recommendations(self, elements: list, workflow_result: Dict, problem_statement: str):
"""Add recommendations section to report."""
elements.append(Paragraph("Recommendations", self.custom_styles['SectionHeader']))
tasks = workflow_result.get('tasks', [])
all_recommendations = []
# Collect recommendations from all agents
for task in tasks:
if task.status == TaskStatus.COMPLETED and task.result:
if isinstance(task.result, dict):
for field in ['recommendations', 'final_recommendations', 'improvements']:
if field in task.result:
recs = task.result[field]
for rec in recs:
if isinstance(rec, dict):
all_recommendations.append(rec)
else:
all_recommendations.append({
'recommendation': str(rec),
'priority': 'medium',
'source': task.assigned_to
})
if not all_recommendations:
elements.append(Paragraph("No specific recommendations were generated.",
self.custom_styles['CustomBody']))
return
# Categorize by priority
priority_groups = {'high': [], 'medium': [], 'low': []}
for rec in all_recommendations:
priority = rec.get('priority', 'medium')
if priority in priority_groups:
priority_groups[priority].append(rec)
# Add recommendations by priority
for priority, recs in priority_groups.items():
if recs:
elements.append(Paragraph(f"<b>{priority.title()} Priority:</b>", self.styles['Heading4']))
for rec in recs[:5]: # Limit to top 5 per category
rec_text = rec.get('recommendation', rec)
elements.append(Paragraph(f"• {rec_text}", self.custom_styles['CustomBody']))
elements.append(Spacer(1, 0.1*inch))
def _add_confidence_analysis(self, elements: list, workflow_result: Dict, problem_statement: str):
"""Add confidence analysis section to report."""
elements.append(Paragraph("Confidence Analysis", self.custom_styles['SectionHeader']))
tasks = workflow_result.get('tasks', [])
contributions = workflow_result.get('agent_contributions', {})
# Calculate overall confidence
task_confidences = [t.confidence for t in tasks if t.confidence > 0]
overall_confidence = np.mean(task_confidences) if task_confidences else 0
confidence_text = f"""
<b>Overall Confidence Score: {overall_confidence:.0%}</b><br/>
<br/>
The confidence score reflects the system's assessment of result quality and reliability
based on evidence strength, consistency, and completeness.
"""
elements.append(Paragraph(confidence_text, self.custom_styles['CustomBody']))
elements.append(Spacer(1, 0.1*inch))
# Create confidence table
conf_data = [['Agent Role', 'Average Confidence', 'Tasks Completed']]
for agent, stats in contributions.items():
role = stats.get('role', 'Unknown')
avg_conf = stats.get('average_confidence', 0)
tasks = stats.get('tasks_completed', 0)
conf_data.append([role, f"{avg_conf:.0%}", str(tasks)])
conf_table = Table(conf_data, colWidths=[2*inch, 1.5*inch, 1.5*inch])
conf_table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (-1, 0), colors.grey),
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
('ALIGN', (0, 0), (-1, -1), 'CENTER'),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('FONTSIZE', (0, 0), (-1, -1), 10),
('BOTTOMPADDING', (0, 0), (-1, 0), 12),
('BACKGROUND', (0, 1), (-1, -1), colors.beige),
('GRID', (0, 0), (-1, -1), 1, colors.black)
]))
elements.append(conf_table)
elements.append(Spacer(1, 0.2*inch))
def _add_performance_metrics(self, elements: list, workflow_result: Dict, problem_statement: str):
"""Add performance metrics section to report."""
elements.append(Paragraph("Performance Metrics", self.custom_styles['SectionHeader']))
performance = workflow_result.get('performance_metrics', {})
if not performance:
elements.append(Paragraph("No performance metrics available.",
self.custom_styles['CustomBody']))
return
# Extract metrics
total_time = performance.get('total_execution_time', 0)
avg_task_time = performance.get('average_task_completion_time', 0)
total_collab = performance.get('total_collaborations', 0)
total_messages = performance.get('total_messages', 0)
efficiency = performance.get('efficiency_score', 0)
time_improvement = performance.get('time_improvement_percentage', 0)
metrics_text = f"""
<b>System Performance Overview:</b><br/>
<br/>
• Total Execution Time: {total_time:.1f}s<br/>
• Average Task Time: {avg_task_time:.1f}s<br/>
• Time Improvement: {time_improvement:.1f}% faster than baseline<br/>
• Total Collaborations: {total_collab}<br/>
• Message Exchanges: {total_messages}<br/>
• Efficiency Score: {efficiency:.2%}<br/>
"""
elements.append(Paragraph(metrics_text, self.custom_styles['CustomBody']))
# Add performance insights
elements.append(Spacer(1, 0.1*inch))
elements.append(Paragraph("<b>Performance Insights:</b>", self.styles['Heading4']))
insights = []
if time_improvement > 30:
insights.append("Exceptional Performance: The multi-agent system achieved significant time savings through parallel processing.")
elif time_improvement > 15:
insights.append("Good Performance: The system demonstrated efficient task distribution and execution.")
else:
insights.append("Standard Performance: The system completed tasks within expected parameters.")
if efficiency > 0.8:
insights.append("High Efficiency: Excellent resource utilization and agent coordination.")
elif efficiency > 0.6:
insights.append("Moderate Efficiency: Good balance between speed and quality.")
else:
insights.append("Efficiency Opportunity: Consider optimizing agent workflows for better performance.")
for insight in insights:
elements.append(Paragraph(f"• {insight}", self.custom_styles['CustomBody']))
# Gradio Interface Functions
def create_gradio_interface():
"""Create the main Gradio interface for the multi-agent system."""
# Initialize components
coordinator = None
visualizer = WorkflowVisualizer()
report_generator = ReportGenerator()
# State variables
current_workflow = None
current_problem = ""
demo_mode = False
def initialize_agents(api_key: str, model: str = "gpt-4", use_demo: bool = False) -> str:
"""Initialize the multi-agent system."""
nonlocal coordinator, demo_mode
demo_mode = use_demo
if not use_demo and not api_key:
return "Please provide an OpenAI API key or enable Demo Mode to initialize the agents."
try:
# Initialize LLM only if not in demo mode
llm = None
if not use_demo and api_key:
llm = ChatOpenAI(
api_key=api_key,
model=model,
temperature=Config.TEMPERATURE,
max_tokens=Config.MAX_TOKENS
)
# Create coordinator
coordinator = CoordinatorAgent("Coordinator", llm)
# Create specialized agents
researcher = ResearcherAgent("Researcher-1", llm)
analyst = AnalystAgent("Analyst-1", llm)
critic = CriticAgent("Critic-1", llm)
synthesizer = SynthesizerAgent("Synthesizer-1", llm)
# Register agents with coordinator
coordinator.register_agent(researcher)
coordinator.register_agent(analyst)
coordinator.register_agent(critic)
coordinator.register_agent(synthesizer)
mode_text = "Demo Mode" if use_demo else f"Live Mode ({model})"
return f"Successfully initialized multi-agent system with {len(coordinator.agents)} agents in {mode_text}."
except Exception as e:
logger.error(f"Error initializing agents: {str(e)}")
return f"Error initializing agents: {str(e)}"
async def analyze_problem(problem: str, execution_mode: str, use_template: bool = False) -> Tuple[str, Any, Any, Any, Any]:
"""Analyze a problem using the multi-agent system."""
nonlocal current_workflow, current_problem
if not coordinator:
return "Please initialize the agents first.", None, None, None, None
if not problem:
return "Please enter a problem to analyze.", None, None, None, None
current_problem = problem
try:
# Update status
status = "Decomposing problem into subtasks..."
# Decompose problem
tasks = await coordinator.decompose_problem(problem, use_template=use_template)
if not tasks:
return "Failed to decompose problem into tasks.", None, None, None, None
# Update status
status = f"Executing {len(tasks)} tasks using {execution_mode} mode..."
parallel = execution_mode == "Parallel"
# Execute workflow
current_workflow = await coordinator.execute_workflow(tasks, parallel=parallel)
# Create visualizations
active_agents = list(coordinator.agents.keys())
workflow_graph = visualizer.create_workflow_graph(
current_workflow['workflow_graph'],
active_agents=active_agents
)
timeline_chart = visualizer.create_task_timeline(tasks)
confidence_heatmap = visualizer.create_confidence_heatmap(
current_workflow['agent_contributions']
)
performance_chart = visualizer.create_performance_comparison(
current_workflow['performance_metrics']
)
# Generate status summary
success_rate = current_workflow['success_rate']
execution_time = current_workflow['execution_time']
performance = current_workflow['performance_metrics']
status = f"""Analysis completed successfully!
Results Summary:
- Tasks executed: {len(tasks)}
- Success rate: {success_rate:.0%}
- Execution time: {execution_time:.1f} seconds
- Performance improvement: {performance.get('time_improvement_percentage', 0):.1f}% faster
- Agents involved: {len(coordinator.agents)}
Agent Activity:
- Total collaborations: {performance.get('total_collaborations', 0)}
- Messages exchanged: {performance.get('total_messages', 0)}
- Efficiency score: {performance.get('efficiency_score', 0):.2%}"""
return status, workflow_graph, timeline_chart, confidence_heatmap, performance_chart
except Exception as e:
logger.error(f"Error analyzing problem: {str(e)}")
return f"Error during analysis: {str(e)}", None, None, None, None
def generate_report(selected_sections: List[str]) -> Tuple[Optional[str], str]:
"""Generate a report from the current workflow results."""
if not current_workflow:
return None, "No analysis results available. Please run an analysis first."
try:
# Generate unique filename
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"multi_agent_report_{timestamp}.pdf"
report_path = report_generator.generate_report(
current_workflow,
current_problem,
include_sections=selected_sections,
filename=filename
)
if report_path:
return report_path, f"Report generated successfully: {filename}"
else:
return None, "Error generating report."
except Exception as e:
logger.error(f"Error generating report: {str(e)}")
return None, f"Error generating report: {str(e)}"
def get_agent_details(agent_name: str) -> str:
"""Get detailed information about a specific agent."""
if not coordinator or agent_name not in coordinator.agents:
return "Agent not found or system not initialized."
agent = coordinator.agents[agent_name]
status = agent.get_status_summary()
details = f"""## Agent Profile: {agent.name}
**Role:** {agent.role.value}
**Status:** {'Active' if agent.active else 'Inactive'}
**Completed Tasks:** {len(agent.completed_tasks)}
**Current Task:** {agent.current_task.description if agent.current_task else 'None'}
**Average Confidence:** {status['average_confidence']:.0%}
**Collaborations:** {status['collaboration_count']}
### Recent Task History"""
for i, task in enumerate(agent.completed_tasks[-5:], 1):
status_icon = "✓" if task.status == TaskStatus.COMPLETED else "✗"
exec_time = task.performance_metrics.get('execution_time', 0)
details += f"""
**{i}. {status_icon} {task.id}**
- Description: {task.description}
- Confidence: {task.confidence:.0%}
- Execution Time: {exec_time:.1f}s"""
# Add performance insights
if agent.performance_tracker.metrics['task_completion_times']:
avg_time = np.mean(agent.performance_tracker.metrics['task_completion_times'])
details += f"\n\n### Performance Statistics\n"
details += f"• Average Task Time: {avg_time:.1f}s\n"
details += f"• Total Active Time: {sum(agent.performance_tracker.metrics['task_completion_times']):.1f}s"
return details
def get_workflow_insights() -> str:
"""Get insights about the multi-agent system performance."""
if not coordinator:
return "System not initialized."
insights = coordinator.get_workflow_insights()
if insights.get('total_workflows_executed', 0) == 0:
return "No workflow executions yet. Run an analysis to see performance insights."
content = f"""## Workflow Insights
### System Performance Overview
- **Total Workflows:** {insights['total_workflows_executed']}
- **Average Execution Time:** {insights['average_execution_time']:.1f}s
- **Average Success Rate:** {insights['average_success_rate']:.0%}
- **Most Efficient Agent:** {insights.get('most_efficient_agent', 'N/A')}
- **Highest Quality Agent:** {insights.get('highest_quality_agent', 'N/A')}
### Agent Efficiency Rankings"""
if insights.get('agent_efficiency'):
content += "\n\n| Agent | Avg Time/Task | Avg Confidence | Total Tasks |\n"
content += "|-------|---------------|----------------|-------------|\n"
for agent, efficiency in insights['agent_efficiency'].items():
content += f"| {agent} | {efficiency['avg_time_per_task']:.1f}s | "
content += f"{efficiency['avg_confidence']:.0%} | {efficiency['total_tasks']} |\n"
return content
# Create Gradio interface with professional styling
with gr.Blocks(
title="Multi-Agent AI Collaboration System",
theme=gr.themes.Base(),
css="""
.gradio-container {
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', 'Roboto', sans-serif;
max-width: 1400px;
margin: 0 auto;
}
h1, h2, h3 {
color: #2c3e50;
}
.gr-button-primary {
background-color: #3498db !important;
border-color: #3498db !important;
}
.gr-button-primary:hover {
background-color: #2980b9 !important;
border-color: #2980b9 !important;
}
.status-box {
background-color: #f3f4f6;
border-radius: 8px;
padding: 1rem;
margin: 1rem 0;
border-left: 4px solid #3b82f6;
}
"""
) as interface:
gr.Markdown("""
# Multi-Agent AI Collaboration System
Advanced AI system with specialized agents working together to solve complex problems through intelligent task decomposition and parallel processing.
""")
# System Configuration Section
with gr.Group():
gr.Markdown("### System Configuration")
with gr.Row():
with gr.Column(scale=3):
api_key_input = gr.Textbox(
label="OpenAI API Key",
placeholder="sk-...",
type="password",
info="Required for live mode. Leave empty for demo mode."
)
with gr.Column(scale=1):
model_select = gr.Dropdown(
choices=["gpt-4", "gpt-3.5-turbo"],
value="gpt-4",
label="Model",
info="Select the LLM model"
)
with gr.Column(scale=1):
demo_mode_checkbox = gr.Checkbox(
label="Demo Mode",
value=False,
info="Run without API key"
)
with gr.Column(scale=1):
init_button = gr.Button(
"Initialize Agents",
variant="primary",
size="lg"
)
init_status = gr.Textbox(
label="Initialization Status",
interactive=False
)
# Main tabs
with gr.Tabs() as tabs:
# Problem Analysis Tab
with gr.TabItem("Problem Analysis", id=1):
with gr.Group():
gr.Markdown("### Enter a complex problem for multi-agent analysis")
problem_input = gr.Textbox(
label="Problem Statement",
placeholder="Example: Analyze the potential impact of AI on healthcare delivery in the next 5 years",
lines=3,
info="Describe a complex problem that requires multiple perspectives"
)
with gr.Row():
with gr.Column(scale=1):
execution_mode = gr.Radio(
choices=["Sequential", "Parallel"],
value="Parallel",
label="Execution Mode",
info="Parallel mode is faster but requires more resources"
)
with gr.Column(scale=1):
use_template = gr.Checkbox(
label="Use Workflow Template",
value=True,
info="Automatically match to predefined workflows"
)
with gr.Column(scale=2):
analyze_button = gr.Button(
"Analyze Problem",
variant="primary",
size="lg"
)
analysis_status = gr.Textbox(
label="Analysis Status",
interactive=False,
lines=10
)
# Visualization outputs
with gr.Group():
gr.Markdown("### Analysis Visualizations")
with gr.Row():
workflow_graph = gr.Plot(label="Agent Collaboration Network")
with gr.Row():
with gr.Column():
timeline_chart = gr.Plot(label="Task Execution Timeline")
with gr.Column():
confidence_heatmap = gr.Plot(label="Agent Performance Metrics")
with gr.Row():
performance_chart = gr.Plot(label="Performance Comparison")
# Agent Details Tab
with gr.TabItem("Agent Details", id=2):
with gr.Group():
gr.Markdown("### View detailed information about each agent")
with gr.Row():
agent_selector = gr.Dropdown(
choices=["Researcher-1", "Analyst-1", "Critic-1", "Synthesizer-1"],
label="Select Agent",
info="Choose an agent to view their profile and performance"
)
agent_details_button = gr.Button(
"Get Agent Details",
variant="secondary"
)
agent_details_output = gr.Markdown()
with gr.Group():
gr.Markdown("### System Insights")
insights_button = gr.Button(
"Get Workflow Insights",
variant="secondary"
)
insights_output = gr.Markdown()
# Report Generation Tab
with gr.TabItem("Report Generation", id=3):
with gr.Group():
gr.Markdown("### Generate comprehensive analysis report")
section_selector = gr.CheckboxGroup(
choices=[
"executive_summary",
"task_analysis",
"agent_contributions",
"key_findings",
"recommendations",
"confidence_analysis",
"performance_metrics"
],
value=[
"executive_summary",
"key_findings",
"recommendations",
"confidence_analysis"
],
label="Select Report Sections",
info="Choose which sections to include in the report"
)
generate_report_button = gr.Button(
"Generate PDF Report",
variant="primary",
size="lg"
)
with gr.Row():
report_download = gr.File(label="Download Report")
report_status = gr.Textbox(label="Report Status", interactive=False)
# Example Problems Tab
with gr.TabItem("Example Problems", id=4):
gr.Markdown("""
### Example Problems for Analysis
Click on any example to load it into the analysis tab. These examples demonstrate different types of complex problems suitable for multi-agent analysis.
""")
example_problems = [
{
"title": "Business Strategy",
"problem": "Develop a comprehensive strategy for a traditional retail company to transition to e-commerce while maintaining customer loyalty and managing existing physical stores",
"description": "Complex business transformation requiring market analysis, risk assessment, and strategic planning"
},
{
"title": "Technology Assessment",
"problem": "Evaluate the potential risks and benefits of implementing blockchain technology in supply chain management for a global manufacturing company",
"description": "Technical evaluation requiring understanding of emerging technology and business operations"
},
{
"title": "Market Analysis",
"problem": "Analyze the competitive landscape for electric vehicles and identify key success factors for new entrants in the North American market",
"description": "Market research requiring industry analysis, competitor assessment, and trend identification"
},
{
"title": "Policy Evaluation",
"problem": "Assess the implications of remote work policies on organizational culture, productivity, and talent retention in technology companies",
"description": "Organizational analysis requiring understanding of human resources, culture, and productivity metrics"
},
{
"title": "Innovation Planning",
"problem": "Design an innovation framework for a healthcare organization to integrate AI-powered diagnostic tools while ensuring patient privacy and regulatory compliance",
"description": "Innovation strategy requiring technical, regulatory, and ethical considerations"
}
]
example_buttons = []
for i, example in enumerate(example_problems):
with gr.Group():
gr.Markdown(f"""
#### {example['title']}
*{example['description']}*
""")
btn = gr.Button(
f"Load This Example",
variant="secondary",
size="sm"
)
example_buttons.append((btn, example['problem']))
# Help Tab
with gr.TabItem("Help", id=5):
gr.Markdown("""
## How to Use the Multi-Agent AI Collaboration System
### Getting Started
1. **Initialize the System**
- Enter your OpenAI API key for live analysis (optional)
- Or enable Demo Mode to explore without an API key
- Select your preferred model (GPT-4 recommended)
- Click "Initialize Agents"
2. **Analyze a Problem**
- Enter a complex problem in the Problem Analysis tab
- Choose execution mode (Parallel is faster)
- Optionally use workflow templates for common problem types
- Click "Analyze Problem"
3. **Review Results**
- View the agent collaboration network
- Check the task execution timeline
- Review performance metrics
- Explore individual agent details
4. **Generate Report**
- Select desired report sections
- Click "Generate PDF Report"
- Download the comprehensive analysis
### Understanding the Agents
- **Researcher**: Gathers information and identifies key facts
- **Analyst**: Processes data and identifies patterns
- **Critic**: Evaluates quality and identifies gaps
- **Synthesizer**: Combines insights into actionable recommendations
- **Coordinator**: Manages workflow and facilitates collaboration
### Tips for Best Results
- Be specific and detailed in your problem statements
- Complex, multi-faceted problems work best
- Use parallel execution for faster results
- Review agent details to understand the analysis process
- Generate reports for comprehensive documentation
### Troubleshooting
- **Initialization fails**: Check your API key or enable Demo Mode
- **Analysis takes too long**: Try Sequential mode or simpler problems
- **Empty visualizations**: Ensure analysis completed successfully
- **Report generation fails**: Check that analysis was completed first
""")
# Event handlers
init_button.click(
fn=initialize_agents,
inputs=[api_key_input, model_select, demo_mode_checkbox],
outputs=init_status
)
analyze_button.click(
fn=lambda p, m, t: asyncio.run(analyze_problem(p, m, t)),
inputs=[problem_input, execution_mode, use_template],
outputs=[analysis_status, workflow_graph, timeline_chart, confidence_heatmap, performance_chart]
)
agent_details_button.click(
fn=get_agent_details,
inputs=agent_selector,
outputs=agent_details_output
)
insights_button.click(
fn=get_workflow_insights,
inputs=[],
outputs=insights_output
)
generate_report_button.click(
fn=generate_report,
inputs=section_selector,
outputs=[report_download, report_status]
)
# Example button handlers
for btn, problem in example_buttons:
btn.click(
fn=lambda p=problem: p,
outputs=problem_input
).then(
fn=lambda: gr.Tabs.update(selected=1),
outputs=tabs
)
return interface
# Main execution
if __name__ == "__main__":
interface = create_gradio_interface()
interface.launch(
share=True,
server_name="0.0.0.0",
server_port=7860,
favicon_path=None,
show_error=True
) |