File size: 92,730 Bytes
7d2cff7
 
 
 
 
 
 
 
 
1782425
7d2cff7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
"""
Quantitative Alpha Mining Platform with LLM Discovery
Author: Spencer Purdy
Description: A sophisticated platform that leverages LLMs to discover and evaluate alpha factors,
             combining classical quantitative approaches with modern ML techniques for comprehensive
             market analysis and portfolio construction.
"""

# Install required packages
# !pip install -q transformers torch numpy pandas scikit-learn plotly gradio yfinance ta scipy statsmodels openai seaborn

# Core imports
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from datetime import datetime, timedelta
import gradio as gr
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import json
import random
from typing import Dict, List, Tuple, Optional, Any, Union
from dataclasses import dataclass, field
from collections import defaultdict
import warnings
import os
import openai
warnings.filterwarnings('ignore')

# Statistical and ML imports
from scipy import stats
from scipy.optimize import minimize
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
from statsmodels.tsa.stattools import adfuller
import statsmodels.api as sm

# Technical analysis
import ta

# Transformers for NLP
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification

# Set random seeds for reproducibility
np.random.seed(42)
torch.manual_seed(42)
random.seed(42)

# Constants for the trading system
RISK_FREE_RATE = 0.02
TRANSACTION_COST = 0.001  # 10 basis points
REBALANCE_FREQUENCY = 20  # Trading days
MIN_FACTOR_IC = 0.02  # Minimum Information Coefficient threshold
MAX_FACTOR_CORRELATION = 0.7  # Maximum correlation between factors

@dataclass
class AlphaFactor:
    """Data class representing an alpha factor"""
    name: str
    formula: str
    category: str  # 'price', 'volume', 'fundamental', 'alternative'
    lookback_period: int
    ic_score: float = 0.0
    sharpe_ratio: float = 0.0
    turnover: float = 0.0
    decay_rate: float = 0.0
    regime_performance: Dict[str, float] = field(default_factory=dict)
    metadata: Dict[str, Any] = field(default_factory=dict)

@dataclass
class MarketRegime:
    """Data class for market regime identification"""
    regime_type: str  # 'trending_up', 'trending_down', 'mean_reverting', 'volatile'
    confidence: float
    characteristics: Dict[str, float]
    start_date: datetime
    end_date: Optional[datetime] = None

class ClassicalAlphaFactors:
    """Implementation of classical alpha factors inspired by WorldQuant's 101 Alphas"""

    @staticmethod
    def safe_rank(series: pd.Series) -> pd.Series:
        """Safely rank a series handling NaN values"""
        return series.rank(pct=True, na_option='keep')

    @staticmethod
    def safe_rolling(series: pd.Series, window: int, func: str = 'mean') -> pd.Series:
        """Safely apply rolling window operations"""
        if len(series) < window:
            return pd.Series(np.nan, index=series.index)

        if func == 'mean':
            return series.rolling(window, min_periods=1).mean()
        elif func == 'std':
            return series.rolling(window, min_periods=1).std()
        elif func == 'max':
            return series.rolling(window, min_periods=1).max()
        elif func == 'min':
            return series.rolling(window, min_periods=1).min()
        elif func == 'sum':
            return series.rolling(window, min_periods=1).sum()
        else:
            return series.rolling(window, min_periods=1).mean()

    @staticmethod
    def alpha_001(data: pd.DataFrame) -> pd.Series:
        """Alpha#001: Momentum-based factor with volatility adjustment"""
        try:
            returns = data['close'].pct_change().fillna(0)
            condition = returns < 0
            stddev = ClassicalAlphaFactors.safe_rolling(returns, 20, 'std').fillna(0.01)

            signed_power = pd.Series(
                np.where(condition, stddev ** 2, data['close'] ** 2),
                index=data.index
            )

            ts_argmax = signed_power.rolling(5, min_periods=1).apply(
                lambda x: x.argmax() if len(x) > 0 else 0
            )

            result = ClassicalAlphaFactors.safe_rank(ts_argmax) - 0.5
            return result.fillna(0)
        except Exception as e:
            return pd.Series(0, index=data.index)

    @staticmethod
    def alpha_002(data: pd.DataFrame) -> pd.Series:
        """Alpha#002: Volume-price correlation factor"""
        try:
            # Ensure no division by zero
            data_safe = data.copy()
            data_safe['volume'] = data_safe['volume'].replace(0, 1)
            data_safe['open'] = data_safe['open'].replace(0, data_safe['close'])

            log_volume_delta = np.log(data_safe['volume']).diff(2).fillna(0)
            price_change_ratio = ((data_safe['close'] - data_safe['open']) / data_safe['open']).fillna(0)

            rank1 = ClassicalAlphaFactors.safe_rank(log_volume_delta)
            rank2 = ClassicalAlphaFactors.safe_rank(price_change_ratio)

            correlation = rank1.rolling(6, min_periods=1).corr(rank2)
            return (-1 * correlation).fillna(0)
        except Exception as e:
            return pd.Series(0, index=data.index)

    @staticmethod
    def alpha_003(data: pd.DataFrame) -> pd.Series:
        """Alpha#003: Open-volume correlation"""
        try:
            rank_open = ClassicalAlphaFactors.safe_rank(data['open'])
            rank_volume = ClassicalAlphaFactors.safe_rank(data['volume'])

            correlation = rank_open.rolling(10, min_periods=1).corr(rank_volume)
            return (-1 * correlation).fillna(0)
        except Exception as e:
            return pd.Series(0, index=data.index)

    @staticmethod
    def alpha_004(data: pd.DataFrame) -> pd.Series:
        """Alpha#004: Low price time series rank"""
        try:
            rank_low = ClassicalAlphaFactors.safe_rank(data['low'])
            ts_rank = rank_low.rolling(9, min_periods=1).apply(
                lambda x: ClassicalAlphaFactors.safe_rank(pd.Series(x)).iloc[-1] if len(x) > 0 else 0.5
            )
            return (-1 * ts_rank).fillna(0)
        except Exception as e:
            return pd.Series(0, index=data.index)

    @staticmethod
    def alpha_005(data: pd.DataFrame) -> pd.Series:
        """Alpha#005: VWAP-based factor"""
        try:
            # Calculate VWAP safely
            data_safe = data.copy()
            data_safe['volume'] = data_safe['volume'].replace(0, 1)

            vwap = (data_safe['close'] * data_safe['volume']).cumsum() / data_safe['volume'].cumsum()
            vwap_ma = ClassicalAlphaFactors.safe_rolling(vwap, 10, 'mean')

            rank1 = ClassicalAlphaFactors.safe_rank(data_safe['open'] - vwap_ma)
            rank2 = np.abs(ClassicalAlphaFactors.safe_rank(data_safe['close'] - vwap))

            result = rank1 * (-1 * rank2)
            return result.fillna(0)
        except Exception as e:
            return pd.Series(0, index=data.index)

    @staticmethod
    def alpha_006(data: pd.DataFrame) -> pd.Series:
        """Alpha#006: Open-volume correlation"""
        try:
            correlation = data['open'].rolling(10, min_periods=1).corr(data['volume'])
            return (-1 * correlation).fillna(0)
        except Exception as e:
            return pd.Series(0, index=data.index)

    @staticmethod
    def alpha_007(data: pd.DataFrame) -> pd.Series:
        """Alpha#007: Volume-based momentum"""
        try:
            adv20 = ClassicalAlphaFactors.safe_rolling(data['volume'], 20, 'mean')
            condition = adv20 < data['volume']

            close_delta = data['close'].diff(7).fillna(0)
            abs_delta = np.abs(close_delta)

            ts_rank = abs_delta.rolling(60, min_periods=1).apply(
                lambda x: ClassicalAlphaFactors.safe_rank(pd.Series(x)).iloc[-1] if len(x) > 0 else 0.5
            )

            result = pd.Series(
                np.where(condition, -1 * ts_rank * np.sign(close_delta), -1),
                index=data.index
            )
            return result.fillna(0)
        except Exception as e:
            return pd.Series(0, index=data.index)

    @staticmethod
    def alpha_008(data: pd.DataFrame) -> pd.Series:
        """Alpha#008: Open-return product factor"""
        try:
            returns = data['close'].pct_change().fillna(0)
            sum_open = ClassicalAlphaFactors.safe_rolling(data['open'], 5, 'sum')
            sum_returns = ClassicalAlphaFactors.safe_rolling(returns, 5, 'sum')

            product = sum_open * sum_returns
            delayed_product = product.shift(10).fillna(method='bfill')

            result = -1 * ClassicalAlphaFactors.safe_rank(product - delayed_product)
            return result.fillna(0)
        except Exception as e:
            return pd.Series(0, index=data.index)

    @staticmethod
    def alpha_009(data: pd.DataFrame) -> pd.Series:
        """Alpha#009: Close delta conditional factor"""
        try:
            close_delta = data['close'].diff(1).fillna(0)
            ts_min = ClassicalAlphaFactors.safe_rolling(close_delta, 5, 'min')
            ts_max = ClassicalAlphaFactors.safe_rolling(close_delta, 5, 'max')

            condition1 = ts_min > 0
            condition2 = ts_max < 0

            result = pd.Series(
                np.where(condition1, close_delta,
                        np.where(condition2, close_delta, -1 * close_delta)),
                index=data.index
            )
            return result.fillna(0)
        except Exception as e:
            return pd.Series(0, index=data.index)

    @staticmethod
    def alpha_010(data: pd.DataFrame) -> pd.Series:
        """Alpha#010: Ranked version of alpha_009"""
        try:
            close_delta = data['close'].diff(1).fillna(0)
            ts_min = ClassicalAlphaFactors.safe_rolling(close_delta, 4, 'min')
            ts_max = ClassicalAlphaFactors.safe_rolling(close_delta, 4, 'max')

            condition1 = ts_min > 0
            condition2 = ts_max < 0

            raw_result = pd.Series(
                np.where(condition1, close_delta,
                        np.where(condition2, close_delta, -1 * close_delta)),
                index=data.index
            )

            result = ClassicalAlphaFactors.safe_rank(raw_result)
            return result.fillna(0)
        except Exception as e:
            return pd.Series(0, index=data.index)

    @staticmethod
    def get_all_classical_factors() -> List[callable]:
        """Return list of all classical alpha factor functions"""
        return [
            ClassicalAlphaFactors.alpha_001,
            ClassicalAlphaFactors.alpha_002,
            ClassicalAlphaFactors.alpha_003,
            ClassicalAlphaFactors.alpha_004,
            ClassicalAlphaFactors.alpha_005,
            ClassicalAlphaFactors.alpha_006,
            ClassicalAlphaFactors.alpha_007,
            ClassicalAlphaFactors.alpha_008,
            ClassicalAlphaFactors.alpha_009,
            ClassicalAlphaFactors.alpha_010
        ]

class LLMAlphaGenerator:
    """Generate novel alpha factors using OpenAI's GPT models"""

    def __init__(self, api_key: str = None):
        self.api_key = api_key
        if self.api_key:
            openai.api_key = self.api_key

        self.operators = ['rank', 'ts_rank', 'ts_sum', 'ts_mean', 'ts_std', 'ts_max', 'ts_min',
                         'correlation', 'covariance', 'delta', 'delay', 'log', 'sign', 'abs']
        self.variables = ['open', 'high', 'low', 'close', 'volume', 'returns', 'vwap']
        self.generated_factors = []

    def generate_llm_factor(self, market_context: Dict[str, Any], category: str) -> Tuple[str, str]:
        """Generate a novel alpha factor formula using OpenAI's GPT model"""

        # If no API key, use fallback method
        if not self.api_key:
            return self._generate_fallback_factor(category)

        # Create prompt for the LLM
        prompt = f"""You are a quantitative researcher creating novel alpha factors for trading.

Market Context:
- Current Regime: {market_context.get('regime', 'unknown')}
- Average Volatility: {market_context.get('volatility', 0.02):.1%}
- Trend Strength: {market_context.get('trend_strength', 0.5):.1%}

Task: Generate a novel alpha factor formula for the '{category}' category.

Available operators: {', '.join(self.operators)}
Available variables: {', '.join(self.variables)}

Requirements:
1. The formula must be executable Python code using pandas operations
2. Use time-series operators (ts_*) with appropriate lookback periods
3. The factor should capture {category} characteristics
4. Include rank transformations to make the factor cross-sectionally comparable
5. The formula should be between 50-150 characters

Examples of good alpha factors:
- rank(ts_sum(returns, 20)) * rank(volume / ts_mean(volume, 20))
- -1 * correlation(rank(close), rank(volume), 10)
- sign(returns) * ts_std(returns, 20) / ts_mean(abs(returns), 20)

Generate ONE formula that captures {category} patterns. Return ONLY the formula, no explanation."""

        try:
            # Call OpenAI API
            response = openai.ChatCompletion.create(
                model="gpt-3.5-turbo",
                messages=[
                    {"role": "system", "content": "You are a quantitative finance expert specializing in alpha factor research."},
                    {"role": "user", "content": prompt}
                ],
                temperature=0.7,
                max_tokens=150
            )

            formula = response.choices[0].message.content.strip()

            # Validate the formula
            if self.validate_formula(formula):
                name = f"LLM_{category}_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
                self.generated_factors.append({'name': name, 'formula': formula, 'category': category})
                return name, formula
            else:
                return self._generate_fallback_factor(category)

        except Exception as e:
            print(f"LLM generation error: {e}")
            return self._generate_fallback_factor(category)

    def _generate_fallback_factor(self, category: str) -> Tuple[str, str]:
        """Generate a fallback factor if LLM generation fails"""
        templates = {
            'momentum': "rank(ts_sum(returns, 20)) * rank(volume / ts_mean(volume, 20))",
            'mean_reversion': "-1 * (close - ts_mean(close, 20)) / ts_std(close, 20)",
            'volatility': "ts_std(returns, 20) / ts_mean(abs(returns), 20)",
            'microstructure': "(high - low) / (high + low) * rank(volume)",
            'price': "rank(close / ts_max(high, 20))",
            'volume': "rank(volume / ts_mean(volume, 50))",
            'fundamental': "rank(close * volume / ts_sum(volume, 10))",
            'alternative': "rank(ts_std(volume, 10) / ts_mean(volume, 30))"
        }

        formula = templates.get(category, templates['momentum'])
        name = f"Fallback_{category}_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
        return name, formula

    def validate_formula(self, formula: str) -> bool:
        """Validate that a formula is syntactically correct and safe"""
        try:
            # Check for balanced parentheses
            if formula.count('(') != formula.count(')'):
                return False

            # Check for dangerous operations
            dangerous_ops = ['eval', 'exec', 'import', '__', 'lambda', 'os', 'sys']
            for op in dangerous_ops:
                if op in formula:
                    return False

            # Check that it contains at least one operator and one variable
            has_operator = any(op in formula for op in self.operators)
            has_variable = any(var in formula for var in self.variables)

            return has_operator and has_variable

        except:
            return False

    def evaluate_formula(self, formula: str, data: pd.DataFrame) -> pd.Series:
        """Safely evaluate a formula on market data"""
        try:
            # Prepare safe data
            safe_data = data.copy()
            safe_data['volume'] = safe_data['volume'].replace(0, 1)  # Avoid division by zero

            # Calculate derived variables
            returns = safe_data['close'].pct_change().fillna(0)
            vwap = (safe_data['close'] * safe_data['volume']).cumsum() / safe_data['volume'].cumsum()
            vwap = vwap.fillna(safe_data['close'])
            adv20 = safe_data['volume'].rolling(20, min_periods=1).mean()

            # Create evaluation context
            context = {
                'open': safe_data['open'],
                'high': safe_data['high'],
                'low': safe_data['low'],
                'close': safe_data['close'],
                'volume': safe_data['volume'],
                'returns': returns,
                'vwap': vwap,
                'adv20': adv20
            }

            # Define safe functions with error handling
            def safe_rank(x):
                return x.rank(pct=True, na_option='keep').fillna(0.5)

            def safe_ts_rank(x, n):
                return x.rolling(n, min_periods=1).apply(
                    lambda y: y.rank(pct=True).iloc[-1] if len(y) > 0 else 0.5
                ).fillna(0.5)

            def safe_ts_sum(x, n):
                return x.rolling(n, min_periods=1).sum().fillna(0)

            def safe_ts_mean(x, n):
                return x.rolling(n, min_periods=1).mean().fillna(x.fillna(0))

            def safe_ts_std(x, n):
                result = x.rolling(n, min_periods=1).std()
                return result.fillna(0.001)  # Small non-zero value

            def safe_ts_max(x, n):
                return x.rolling(n, min_periods=1).max().fillna(x.fillna(0))

            def safe_ts_min(x, n):
                return x.rolling(n, min_periods=1).min().fillna(x.fillna(0))

            def safe_correlation(x, y, n):
                return x.rolling(n, min_periods=1).corr(y).fillna(0)

            def safe_covariance(x, y, n):
                return x.rolling(n, min_periods=1).cov(y).fillna(0)

            def safe_delta(x, n):
                return x.diff(n).fillna(0)

            def safe_delay(x, n):
                return x.shift(n).fillna(method='bfill').fillna(0)

            def safe_log(x):
                return np.log(x.clip(lower=0.001))

            def safe_sign(x):
                return np.sign(x).fillna(0)

            def safe_abs(x):
                return np.abs(x).fillna(0)

            # Safe functions namespace
            safe_functions = {
                'rank': safe_rank,
                'ts_rank': safe_ts_rank,
                'ts_sum': safe_ts_sum,
                'ts_mean': safe_ts_mean,
                'ts_std': safe_ts_std,
                'ts_max': safe_ts_max,
                'ts_min': safe_ts_min,
                'correlation': safe_correlation,
                'covariance': safe_covariance,
                'delta': safe_delta,
                'delay': safe_delay,
                'log': safe_log,
                'sign': safe_sign,
                'abs': safe_abs,
                'np': np,
                'pd': pd
            }

            # Combine context and functions
            eval_namespace = {**context, **safe_functions}

            # Evaluate formula with restricted namespace
            result = eval(formula, {"__builtins__": {}}, eval_namespace)

            # Convert to Series if needed
            if not isinstance(result, pd.Series):
                result = pd.Series(result, index=data.index)

            # Final safety checks
            result = result.replace([np.inf, -np.inf], 0)
            result = result.fillna(0)

            return result

        except Exception as e:
            print(f"Error evaluating formula '{formula}': {e}")
            # Return a neutral factor (zeros) on error
            return pd.Series(0, index=data.index)

class AlternativeDataPipeline:
    """Extract sentiment scores from alternative data sources"""

    def __init__(self):
        # Initialize sentiment analysis model
        try:
            self.sentiment_analyzer = pipeline(
                "sentiment-analysis",
                model="ProsusAI/finbert",
                device=-1  # CPU
            )
        except:
            # Fallback to a simpler model if FinBERT fails
            self.sentiment_analyzer = None

        # Simulated data sources
        self.data_sources = {
            'earnings_calls': self._generate_earnings_call_snippets,
            'sec_filings': self._generate_sec_filing_snippets,
            'news': self._generate_news_snippets,
            'social_media': self._generate_social_media_snippets
        }

    def _generate_earnings_call_snippets(self) -> List[str]:
        """Generate simulated earnings call transcripts"""
        positive_phrases = [
            "We exceeded our revenue guidance for the quarter with strong performance across all segments",
            "Our strategic initiatives are yielding positive results with improved margins",
            "Customer acquisition costs have decreased while lifetime value continues to grow",
            "We're seeing strong demand for our products in emerging markets",
            "Our R&D investments are beginning to show promising returns"
        ]

        negative_phrases = [
            "We faced headwinds in our core markets due to increased competition",
            "Supply chain disruptions continue to impact our margins",
            "We're revising our guidance downward for the upcoming quarter",
            "Customer churn rates have increased beyond our expectations",
            "Regulatory challenges in key markets are affecting our expansion plans"
        ]

        neutral_phrases = [
            "We maintained our market position despite challenging conditions",
            "Our performance was in line with analyst expectations",
            "We continue to execute on our long-term strategic plan",
            "Market conditions remain mixed with both opportunities and challenges",
            "We're monitoring the situation closely and will adjust as needed"
        ]

        # Mix phrases based on market conditions
        market_sentiment = random.choice(['positive', 'negative', 'neutral'])

        if market_sentiment == 'positive':
            return random.sample(positive_phrases, min(3, len(positive_phrases))) + \
                   random.sample(neutral_phrases, min(1, len(neutral_phrases)))
        elif market_sentiment == 'negative':
            return random.sample(negative_phrases, min(3, len(negative_phrases))) + \
                   random.sample(neutral_phrases, min(1, len(neutral_phrases)))
        else:
            return random.sample(neutral_phrases, min(2, len(neutral_phrases))) + \
                   random.sample(positive_phrases, min(1, len(positive_phrases))) + \
                   random.sample(negative_phrases, min(1, len(negative_phrases)))

    def _generate_sec_filing_snippets(self) -> List[str]:
        """Generate simulated SEC filing excerpts"""
        risk_factors = [
            "The company faces increased cybersecurity risks that could materially affect operations",
            "Changes in interest rates may adversely impact our financial condition",
            "We depend on key personnel whose loss could harm our business",
            "Intense competition in our industry may result in reduced market share",
            "Economic uncertainty could reduce demand for our products and services"
        ]

        positive_disclosures = [
            "We have secured long-term contracts with several major customers",
            "Our patent portfolio provides strong competitive advantages",
            "Recent acquisitions are expected to be accretive to earnings",
            "We maintain a strong balance sheet with minimal debt",
            "Our diversified revenue streams provide resilience against market volatility"
        ]

        return random.sample(risk_factors, min(2, len(risk_factors))) + \
               random.sample(positive_disclosures, min(2, len(positive_disclosures)))

    def _generate_news_snippets(self) -> List[str]:
        """Generate simulated financial news headlines"""
        headlines = [
            "Company announces breakthrough technology in core product line",
            "Analysts upgrade stock following strong quarterly results",
            "New CEO brings fresh perspective and growth strategy",
            "Competitor's product recall may benefit company's market share",
            "Industry report shows growing demand for company's services",
            "Regulatory approval received for expansion into new markets",
            "Company faces lawsuit over alleged patent infringement",
            "Major customer switches to competitor's platform",
            "Economic indicators suggest challenging environment ahead"
        ]

        return random.sample(headlines, min(5, len(headlines)))

    def _generate_social_media_snippets(self) -> List[str]:
        """Generate simulated social media sentiment"""
        posts = [
            "Love the new features in the latest product update! #innovation",
            "Customer service has really improved lately, impressed!",
            "Stock looking oversold here, might be a buying opportunity",
            "Disappointed with the recent earnings miss, concerning trend",
            "Management seems to be making all the right moves",
            "Product quality has declined, considering alternatives",
            "Excited about the company's expansion plans",
            "Valuation seems stretched at current levels"
        ]

        return random.sample(posts, min(4, len(posts)))

    def analyze_sentiment(self, text: str) -> Dict[str, float]:
        """Analyze sentiment of a single text"""
        if self.sentiment_analyzer is None:
            # Fallback sentiment analysis
            positive_words = ['strong', 'exceed', 'growth', 'positive', 'improve', 'breakthrough']
            negative_words = ['decline', 'loss', 'risk', 'challenge', 'lawsuit', 'disappoint']

            text_lower = text.lower()
            pos_count = sum(1 for word in positive_words if word in text_lower)
            neg_count = sum(1 for word in negative_words if word in text_lower)

            if pos_count > neg_count:
                return {'label': 'positive', 'score': 0.7}
            elif neg_count > pos_count:
                return {'label': 'negative', 'score': 0.7}
            else:
                return {'label': 'neutral', 'score': 0.5}

        try:
            result = self.sentiment_analyzer(text[:512])[0]
            return result
        except:
            return {'label': 'neutral', 'score': 0.5}

    def extract_sentiment_scores(self, source: str = 'all') -> Dict[str, Dict[str, float]]:
        """Extract sentiment scores from specified data source"""
        sentiment_scores = {}

        if source == 'all':
            sources_to_analyze = self.data_sources.keys()
        else:
            sources_to_analyze = [source] if source in self.data_sources else []

        for src in sources_to_analyze:
            snippets = self.data_sources[src]()

            # Analyze each snippet
            positive_count = 0
            negative_count = 0
            total_score = 0

            for snippet in snippets:
                try:
                    result = self.analyze_sentiment(snippet)

                    if result['label'] == 'positive':
                        positive_count += 1
                        total_score += result['score']
                    elif result['label'] == 'negative':
                        negative_count += 1
                        total_score -= result['score']

                except:
                    continue

            # Calculate aggregate sentiment
            if len(snippets) > 0:
                sentiment_scores[src] = {
                    'positive_ratio': positive_count / len(snippets),
                    'negative_ratio': negative_count / len(snippets),
                    'net_sentiment': total_score / len(snippets),
                    'snippets_analyzed': len(snippets)
                }
            else:
                sentiment_scores[src] = {
                    'positive_ratio': 0,
                    'negative_ratio': 0,
                    'net_sentiment': 0,
                    'snippets_analyzed': 0
                }

        return sentiment_scores

    def create_sentiment_alpha_factors(self, sentiment_scores: Dict[str, Dict[str, float]]) -> List[AlphaFactor]:
        """Create alpha factors based on sentiment scores"""
        factors = []

        # Earnings call sentiment factor
        if 'earnings_calls' in sentiment_scores:
            factor = AlphaFactor(
                name="sentiment_earnings_momentum",
                formula="earnings_sentiment * volume_ratio",
                category="alternative",
                lookback_period=20,
                metadata={'sentiment_data': sentiment_scores['earnings_calls']}
            )
            factors.append(factor)

        # News sentiment factor
        if 'news' in sentiment_scores:
            factor = AlphaFactor(
                name="sentiment_news_reversal",
                formula="-1 * news_sentiment * (close - ma20) / std20",
                category="alternative",
                lookback_period=20,
                metadata={'sentiment_data': sentiment_scores['news']}
            )
            factors.append(factor)

        # Composite sentiment factor
        if len(sentiment_scores) > 1:
            avg_sentiment = np.mean([s['net_sentiment'] for s in sentiment_scores.values()])

            factor = AlphaFactor(
                name="sentiment_composite",
                formula="composite_sentiment * rank(volume)",
                category="alternative",
                lookback_period=10,
                metadata={
                    'avg_sentiment': avg_sentiment,
                    'sources': list(sentiment_scores.keys())
                }
            )
            factors.append(factor)

        return factors

class MarketRegimeDetector:
    """Detect market regimes using statistical methods"""

    def __init__(self):
        self.regime_history = []
        self.current_regime = None

    def detect_regime(self, data: pd.DataFrame, lookback: int = 60) -> MarketRegime:
        """Detect current market regime"""

        # Ensure we have enough data
        if len(data) < 20:  # Minimum required
            return MarketRegime(
                regime_type='volatile',
                confidence=0.5,
                characteristics={
                    'trend_strength': 0,
                    'volatility': 0.02,
                    'hurst_exponent': 0.5,
                    'volume_trend': 0,
                    'avg_return': 0
                },
                start_date=data.index[0] if len(data) > 0 else datetime.now()
            )

        if len(data) < lookback:
            lookback = len(data)

        # Calculate features
        returns = data['close'].pct_change().fillna(0)
        recent_returns = returns.iloc[-lookback:]

        # Trend strength
        trend_strength = self._calculate_trend_strength(data['close'].iloc[-lookback:])

        # Volatility
        volatility = recent_returns.std() * np.sqrt(252)

        # Mean reversion test
        hurst_exponent = self._calculate_hurst_exponent(data['close'].iloc[-lookback:])

        # Volume patterns
        volume_data = data['volume'].iloc[-lookback:].fillna(0)
        if len(volume_data) > 1:
            try:
                volume_trend = np.polyfit(range(len(volume_data)), volume_data, 1)[0]
            except:
                volume_trend = 0
        else:
            volume_trend = 0

        # Classify regime
        avg_return = recent_returns.mean()

        if trend_strength > 0.6 and avg_return > 0.001:
            regime_type = 'trending_up'
        elif trend_strength > 0.6 and avg_return < -0.001:
            regime_type = 'trending_down'
        elif hurst_exponent < 0.45:
            regime_type = 'mean_reverting'
        else:
            regime_type = 'volatile'

        # Calculate confidence
        confidence = self._calculate_regime_confidence(
            trend_strength, volatility, hurst_exponent
        )

        regime = MarketRegime(
            regime_type=regime_type,
            confidence=confidence,
            characteristics={
                'trend_strength': trend_strength,
                'volatility': volatility,
                'hurst_exponent': hurst_exponent,
                'volume_trend': volume_trend,
                'avg_return': avg_return
            },
            start_date=data.index[-lookback] if lookback <= len(data) else data.index[0]
        )

        self.current_regime = regime
        return regime

    def _calculate_trend_strength(self, prices: pd.Series) -> float:
        """Calculate trend strength using R-squared of linear regression"""
        try:
            if len(prices) < 2:
                return 0

            x = np.arange(len(prices))
            y = prices.values

            # Remove NaN values
            mask = ~np.isnan(y)
            if mask.sum() < 2:
                return 0

            x = x[mask]
            y = y[mask]

            # Normalize
            x_std = x.std()
            y_std = y.std()

            if x_std == 0 or y_std == 0:
                return 0

            x = (x - x.mean()) / x_std
            y = (y - y.mean()) / y_std

            # Linear regression
            slope, intercept = np.polyfit(x, y, 1)
            y_pred = slope * x + intercept

            # R-squared
            ss_res = np.sum((y - y_pred) ** 2)
            ss_tot = np.sum((y - y.mean()) ** 2)

            if ss_tot == 0:
                return 0

            r_squared = 1 - (ss_res / ss_tot)
            return abs(r_squared)

        except:
            return 0

    def _calculate_hurst_exponent(self, prices: pd.Series) -> float:
        """Calculate Hurst exponent for mean reversion detection"""
        try:
            if len(prices) < 20:
                return 0.5

            # Use a fixed set of lags
            max_lag = min(20, len(prices) // 2)
            lags = range(2, max_lag)

            # Calculate R/S for different lags
            rs_values = []

            for lag in lags:
                # Calculate returns
                returns = prices.pct_change(lag).dropna()

                if len(returns) < 2:
                    continue

                # Mean-adjusted series
                mean_returns = returns.mean()
                adjusted = returns - mean_returns

                # Cumulative sum
                cumsum = adjusted.cumsum()

                # Range
                R = cumsum.max() - cumsum.min()

                # Standard deviation
                S = returns.std()

                if S > 0 and R > 0:
                    rs_values.append(R / S)

            if len(rs_values) >= 2:
                # Log-log regression
                valid_lags = list(lags[:len(rs_values)])
                log_lags = np.log(valid_lags)
                log_rs = np.log(rs_values)

                # Remove any inf or nan values
                mask = np.isfinite(log_lags) & np.isfinite(log_rs)
                if mask.sum() >= 2:
                    hurst, _ = np.polyfit(log_lags[mask], log_rs[mask], 1)
                    return max(0, min(1, hurst))  # Bound between 0 and 1

            return 0.5  # Random walk

        except:
            return 0.5

    def _calculate_regime_confidence(self, trend_strength: float,
                                   volatility: float, hurst: float) -> float:
        """Calculate confidence in regime classification"""
        # Base confidence
        confidence = 0.5

        # Strong trend
        if trend_strength > 0.7:
            confidence += 0.2
        elif trend_strength > 0.5:
            confidence += 0.1

        # Clear mean reversion or trending
        if abs(hurst - 0.5) > 0.2:
            confidence += 0.15
        elif abs(hurst - 0.5) > 0.1:
            confidence += 0.075

        # Volatility consistency
        if 0.1 < volatility < 0.4:  # Normal range
            confidence += 0.15
        elif 0.05 < volatility < 0.5:
            confidence += 0.075

        return min(confidence, 1.0)

class FactorEvaluator:
    """Evaluate alpha factors using various metrics"""

    def __init__(self):
        self.evaluation_history = defaultdict(list)

    def calculate_information_coefficient(self, factor_values: pd.Series,
                                        forward_returns: pd.Series) -> float:
        """Calculate Information Coefficient (IC)"""
        try:
            # Remove NaN values
            mask = factor_values.notna() & forward_returns.notna()
            clean_factor = factor_values[mask]
            clean_returns = forward_returns[mask]

            if len(clean_factor) < 20:  # Need minimum observations
                return 0.0

            # Check for zero variance
            if clean_factor.std() == 0 or clean_returns.std() == 0:
                return 0.0

            # Rank correlation (Spearman)
            ic = stats.spearmanr(clean_factor, clean_returns)[0]

            return ic if not np.isnan(ic) else 0.0

        except:
            return 0.0

    def calculate_factor_turnover(self, factor_values: pd.Series,
                                 rebalance_freq: int = 20) -> float:
        """Calculate factor turnover"""
        try:
            if len(factor_values) < rebalance_freq * 2:
                return 0.0

            # Get factor ranks
            ranks = factor_values.rank(pct=True, na_option='keep').fillna(0.5)

            # Calculate portfolio positions (top/bottom quintiles)
            long_positions = ranks > 0.8
            short_positions = ranks < 0.2

            # Calculate turnover at rebalance points
            turnover_rates = []

            for i in range(rebalance_freq, len(ranks), rebalance_freq):
                prev_long = long_positions.iloc[i-rebalance_freq]
                curr_long = long_positions.iloc[i]

                prev_short = short_positions.iloc[i-rebalance_freq]
                curr_short = short_positions.iloc[i]

                # Turnover is the fraction of positions that changed
                long_turnover = (prev_long != curr_long).mean()
                short_turnover = (prev_short != curr_short).mean()

                turnover_rates.append((long_turnover + short_turnover) / 2)

            return np.mean(turnover_rates) if turnover_rates else 0.0

        except:
            return 0.0

    def calculate_factor_decay(self, factor: AlphaFactor,
                              market_data: pd.DataFrame,
                              max_lag: int = 20) -> Dict[int, float]:
        """Calculate IC decay over different prediction horizons"""
        ic_by_lag = {}

        try:
            # Evaluate factor to get values
            factor_values = self._get_factor_values(factor, market_data)

            # Calculate IC for different forward return periods
            for lag in range(1, min(max_lag + 1, len(market_data) - 1)):
                forward_returns = market_data['close'].pct_change(lag).shift(-lag)
                ic = self.calculate_information_coefficient(factor_values, forward_returns)
                ic_by_lag[lag] = ic

        except:
            # Return default decay
            for lag in range(1, max_lag + 1):
                ic_by_lag[lag] = 0.0

        return ic_by_lag

    def _get_factor_values(self, factor: AlphaFactor, market_data: pd.DataFrame) -> pd.Series:
        """Get factor values from formula or function"""
        try:
            if isinstance(factor.formula, str):
                if 'sentiment' in factor.name:
                    # For sentiment factors, create values based on metadata
                    if 'sentiment_data' in factor.metadata:
                        sentiment = factor.metadata['sentiment_data'].get('net_sentiment', 0)
                        # Create factor values that incorporate sentiment
                        base_values = market_data['volume'] / market_data['volume'].rolling(20, min_periods=1).mean()
                        factor_values = base_values * (1 + sentiment)
                    else:
                        # Generate random sentiment-like factor
                        factor_values = pd.Series(
                            np.random.normal(0, 0.1, len(market_data)),
                            index=market_data.index
                        ).cumsum() * 0.01
                else:
                    # Evaluate formula
                    llm_gen = LLMAlphaGenerator()
                    factor_values = llm_gen.evaluate_formula(factor.formula, market_data)
            else:
                # Classical factor (callable)
                factor_values = factor.formula(market_data)

            # Clean up values
            factor_values = factor_values.replace([np.inf, -np.inf], np.nan)
            factor_values = factor_values.fillna(0)

            return factor_values

        except:
            # Return neutral factor on error
            return pd.Series(0, index=market_data.index)

    def evaluate_factor_performance(self, factor: AlphaFactor,
                                  market_data: pd.DataFrame,
                                  regime: Optional[MarketRegime] = None) -> Dict[str, float]:
        """Comprehensive factor performance evaluation"""
        try:
            # Get factor values
            factor_values = self._get_factor_values(factor, market_data)

            # Forward returns
            forward_returns = market_data['close'].pct_change().shift(-1)

            # Calculate metrics
            ic = self.calculate_information_coefficient(factor_values, forward_returns)
            turnover = self.calculate_factor_turnover(factor_values)

            # Sharpe ratio of factor portfolio
            factor_portfolio_returns = self._calculate_factor_portfolio_returns(
                factor_values, forward_returns
            )
            sharpe = self._calculate_sharpe_ratio(factor_portfolio_returns)

            # Max drawdown
            max_dd = self._calculate_max_drawdown(factor_portfolio_returns)

            # Hit rate
            hit_rate = (factor_portfolio_returns > 0).mean() if len(factor_portfolio_returns) > 0 else 0.5

            metrics = {
                'ic': ic,
                'turnover': turnover,
                'sharpe_ratio': sharpe,
                'max_drawdown': max_dd,
                'hit_rate': hit_rate
            }

            # Store in history
            self.evaluation_history[factor.name].append({
                'timestamp': datetime.now(),
                'metrics': metrics,
                'regime': regime.regime_type if regime else 'unknown'
            })

            return metrics

        except:
            # Return default metrics on error
            return {
                'ic': 0.0,
                'turnover': 0.5,
                'sharpe_ratio': 0.0,
                'max_drawdown': 0.1,
                'hit_rate': 0.5
            }

    def _calculate_factor_portfolio_returns(self, factor_values: pd.Series,
                                          forward_returns: pd.Series) -> pd.Series:
        """Calculate returns of long-short portfolio based on factor"""
        try:
            # Rank stocks by factor
            ranks = factor_values.rank(pct=True, na_option='keep').fillna(0.5)

            # Long top quintile, short bottom quintile
            long_weight = (ranks > 0.8).astype(float)
            short_weight = (ranks < 0.2).astype(float)

            # Normalize weights
            long_sum = long_weight.sum()
            short_sum = short_weight.sum()

            if long_sum > 0:
                long_weight = long_weight / long_sum
            if short_sum > 0:
                short_weight = short_weight / short_sum

            # Portfolio returns
            portfolio_returns = (long_weight - short_weight) * forward_returns
            portfolio_returns = portfolio_returns.fillna(0)

            return portfolio_returns

        except:
            return pd.Series(0, index=forward_returns.index)

    def _calculate_sharpe_ratio(self, returns: pd.Series) -> float:
        """Calculate Sharpe ratio"""
        try:
            if len(returns) < 2:
                return 0.0

            clean_returns = returns.dropna()
            if len(clean_returns) < 2:
                return 0.0

            excess_returns = clean_returns - RISK_FREE_RATE / 252

            if clean_returns.std() > 0:
                return np.sqrt(252) * excess_returns.mean() / clean_returns.std()
            else:
                return 0.0

        except:
            return 0.0

    def _calculate_max_drawdown(self, returns: pd.Series) -> float:
        """Calculate maximum drawdown"""
        try:
            if len(returns) < 2:
                return 0.0

            # Calculate cumulative returns
            cum_returns = (1 + returns.fillna(0)).cumprod()

            # Calculate running maximum
            running_max = cum_returns.expanding().max()

            # Calculate drawdown
            drawdown = (cum_returns - running_max) / running_max

            # Return maximum drawdown (positive value)
            return abs(drawdown.min()) if len(drawdown) > 0 else 0.0

        except:
            return 0.0

class HierarchicalRiskParity:
    """Hierarchical Risk Parity portfolio construction"""

    def __init__(self):
        self.linkage_method = 'single'
        self.distance_metric = 'euclidean'

    def calculate_weights(self, returns: pd.DataFrame,
                         factor_scores: pd.DataFrame) -> pd.Series:
        """Calculate HRP weights for factors"""

        # Handle case with single factor or no data
        if returns.empty or len(returns.columns) == 0:
            return pd.Series()

        if len(returns.columns) == 1:
            return pd.Series(1.0, index=returns.columns)

        try:
            # Calculate correlation matrix
            corr_matrix = returns.corr()

            # Replace NaN values with 0
            corr_matrix = corr_matrix.fillna(0)

            # Ensure diagonal is 1
            np.fill_diagonal(corr_matrix.values, 1)

            # Calculate distance matrix
            dist_matrix = np.sqrt(2 * (1 - corr_matrix))

            # Perform hierarchical clustering
            condensed_dist = dist_matrix[np.triu_indices(len(dist_matrix), k=1)]
            linkage_matrix = self._tree_clustering(condensed_dist)

            # Get quasi-diagonal matrix
            quasi_diag = self._get_quasi_diag(linkage_matrix)

            # Calculate weights
            weights = self._get_recursive_bisection(
                returns.cov().fillna(0),
                quasi_diag
            )

            return pd.Series(weights, index=returns.columns)

        except:
            # Equal weights as fallback
            return pd.Series(1.0 / len(returns.columns), index=returns.columns)

    def _tree_clustering(self, dist_matrix: np.ndarray) -> np.ndarray:
        """Perform hierarchical clustering"""
        try:
            from scipy.cluster.hierarchy import linkage
            return linkage(dist_matrix, method=self.linkage_method)
        except:
            # Return dummy linkage matrix
            n = int((1 + np.sqrt(1 + 8 * len(dist_matrix))) / 2)
            return np.zeros((n-1, 4))

    def _get_quasi_diag(self, linkage_matrix: np.ndarray) -> List[int]:
        """Get quasi-diagonal matrix ordering"""
        try:
            from scipy.cluster.hierarchy import dendrogram

            # Get dendrogram
            dendro = dendrogram(linkage_matrix, no_plot=True)

            # Return ordering
            return dendro['leaves']
        except:
            # Return default ordering
            n = linkage_matrix.shape[0] + 1
            return list(range(n))

    def _get_recursive_bisection(self, cov: pd.DataFrame,
                                sort_idx: List[int]) -> np.ndarray:
        """Recursive bisection for weight calculation"""
        try:
            # Initialize weights
            weights = pd.Series(1, index=cov.index)

            # Recursive bisection
            items = [sort_idx]

            while len(items) > 0:
                # Pop item
                item = items.pop()

                if len(item) > 1:
                    # Bisect
                    n = len(item) // 2
                    left = item[:n]
                    right = item[n:]

                    # Calculate variance for each subset
                    var_left = self._get_cluster_var(cov, left)
                    var_right = self._get_cluster_var(cov, right)

                    # Allocate weights inversely proportional to variance
                    total_var = var_left + var_right
                    if total_var > 0:
                        alpha = var_right / total_var
                    else:
                        alpha = 0.5

                    # Update weights
                    weights.iloc[left] *= alpha
                    weights.iloc[right] *= (1 - alpha)

                    # Add to items
                    items.extend([left, right])

            # Normalize
            return weights.values / (weights.sum() + 1e-8)

        except:
            # Equal weights as fallback
            return np.ones(len(cov)) / len(cov)

    def _get_cluster_var(self, cov: pd.DataFrame, items: List[int]) -> float:
        """Calculate cluster variance"""
        try:
            if len(items) == 0:
                return 0
            elif len(items) == 1:
                return cov.iloc[items[0], items[0]]
            else:
                # Calculate weighted variance
                cluster_cov = cov.iloc[items, items]
                weights = pd.Series(1 / len(items), index=cluster_cov.index)

                return weights @ cluster_cov @ weights
        except:
            return 1.0

class RegimeAwarePortfolioOptimizer:
    """Portfolio optimizer that adapts to market regimes"""

    def __init__(self):
        self.hrp = HierarchicalRiskParity()
        self.regime_weights = {
            'trending_up': {'momentum': 0.6, 'mean_reversion': 0.1,
                           'volatility': 0.1, 'alternative': 0.2},
            'trending_down': {'momentum': 0.2, 'mean_reversion': 0.3,
                            'volatility': 0.3, 'alternative': 0.2},
            'mean_reverting': {'momentum': 0.1, 'mean_reversion': 0.6,
                              'volatility': 0.1, 'alternative': 0.2},
            'volatile': {'momentum': 0.2, 'mean_reversion': 0.2,
                        'volatility': 0.4, 'alternative': 0.2}
        }

    def optimize_portfolio(self, factors: List[AlphaFactor],
                          factor_returns: pd.DataFrame,
                          regime: MarketRegime) -> Dict[str, float]:
        """Optimize portfolio weights based on regime"""

        # Handle empty cases
        if not factors or factor_returns.empty:
            return {}

        # Get regime-specific category weights
        category_weights = self.regime_weights.get(
            regime.regime_type,
            self.regime_weights['volatile']
        )

        # Group factors by category
        factors_by_category = defaultdict(list)
        for factor in factors:
            category = factor.category if factor.category in category_weights else 'alternative'
            factors_by_category[category].append(factor)

        # Calculate weights within each category using HRP
        final_weights = {}

        for category, cat_factors in factors_by_category.items():
            if not cat_factors:
                continue

            # Get returns for factors in this category
            cat_factor_names = [f.name for f in cat_factors]
            available_factors = [name for name in cat_factor_names if name in factor_returns.columns]

            if not available_factors:
                continue

            cat_returns = factor_returns[available_factors]

            if len(cat_returns.columns) == 1:
                # Single factor in category
                within_cat_weights = pd.Series(1.0, index=cat_returns.columns)
            else:
                # Multiple factors - use HRP
                within_cat_weights = self.hrp.calculate_weights(
                    cat_returns,
                    pd.DataFrame()  # No additional scores needed
                )

            # Apply category weight
            cat_weight = category_weights.get(category, 0.1)

            for factor_name, weight in within_cat_weights.items():
                final_weights[factor_name] = weight * cat_weight

        # Normalize weights
        total_weight = sum(final_weights.values())
        if total_weight > 0:
            final_weights = {k: v/total_weight for k, v in final_weights.items()}

        return final_weights

class AlphaMiningPlatform:
    """Main platform for alpha factor discovery and evaluation"""

    def __init__(self, openai_api_key: str = None):
        # Initialize components with API key
        self.llm_generator = LLMAlphaGenerator(api_key=openai_api_key)
        self.alt_data_pipeline = AlternativeDataPipeline()
        self.regime_detector = MarketRegimeDetector()
        self.factor_evaluator = FactorEvaluator()
        self.portfolio_optimizer = RegimeAwarePortfolioOptimizer()

        # Factor storage
        self.discovered_factors = []
        self.active_factors = []
        self.factor_performance_history = defaultdict(list)

        # Portfolio state
        self.current_weights = {}
        self.portfolio_value = 100000
        self.portfolio_history = []

        # Store factor values for backtesting
        self.factor_values_cache = {}

    def discover_factors(self, market_data: pd.DataFrame,
                        n_factors: int = 20) -> List[AlphaFactor]:
        """Discover new alpha factors using multiple methods"""

        discovered = []

        # Get market context for LLM
        current_regime = self.regime_detector.detect_regime(market_data)
        market_context = {
            'regime': current_regime.regime_type,
            'volatility': current_regime.characteristics['volatility'],
            'trend_strength': current_regime.characteristics['trend_strength']
        }

        # 1. Classical factors
        classical_funcs = ClassicalAlphaFactors.get_all_classical_factors()
        for i, func in enumerate(classical_funcs[:n_factors//2]):
            factor = AlphaFactor(
                name=f"classical_{func.__name__}",
                formula=func,
                category="price",
                lookback_period=20
            )
            discovered.append(factor)

        # 2. LLM-generated factors
        categories = ['momentum', 'mean_reversion', 'volatility', 'microstructure']
        for i in range(n_factors//3):
            category = categories[i % len(categories)]
            name, formula = self.llm_generator.generate_llm_factor(
                market_context=market_context,
                category=category
            )

            factor = AlphaFactor(
                name=name,
                formula=formula,
                category=category,
                lookback_period=random.choice([10, 20, 30, 60])
            )
            discovered.append(factor)

        # 3. Sentiment-based factors
        sentiment_scores = self.alt_data_pipeline.extract_sentiment_scores()
        sentiment_factors = self.alt_data_pipeline.create_sentiment_alpha_factors(
            sentiment_scores
        )
        discovered.extend(sentiment_factors[:n_factors//6])

        return discovered

    def evaluate_factors(self, factors: List[AlphaFactor],
                        market_data: pd.DataFrame) -> pd.DataFrame:
        """Evaluate all factors and return performance metrics"""

        # Detect current regime
        regime = self.regime_detector.detect_regime(market_data)

        evaluation_results = []

        # Clear cache for new evaluation
        self.factor_values_cache = {}

        for factor in factors:
            # Evaluate performance
            metrics = self.factor_evaluator.evaluate_factor_performance(
                factor, market_data, regime
            )

            # Update factor attributes
            factor.ic_score = metrics['ic']
            factor.sharpe_ratio = metrics['sharpe_ratio']
            factor.turnover = metrics['turnover']

            # Calculate decay
            decay_profile = self.factor_evaluator.calculate_factor_decay(
                factor, market_data
            )

            # Average decay rate
            if len(decay_profile) > 1:
                decay_values = list(decay_profile.values())
                factor.decay_rate = (decay_values[0] - decay_values[-1]) / len(decay_values)

            # Store regime performance
            factor.regime_performance[regime.regime_type] = metrics['ic']

            # Cache factor values for backtesting
            self.factor_values_cache[factor.name] = self.factor_evaluator._get_factor_values(factor, market_data)

            evaluation_results.append({
                'name': factor.name,
                'category': factor.category,
                'ic': metrics['ic'],
                'sharpe': metrics['sharpe_ratio'],
                'turnover': metrics['turnover'],
                'max_dd': metrics['max_drawdown'],
                'regime': regime.regime_type,
                'decay_rate': factor.decay_rate
            })

        return pd.DataFrame(evaluation_results)

    def select_active_factors(self, factors: List[AlphaFactor],
                             min_ic: float = MIN_FACTOR_IC,
                             max_correlation: float = MAX_FACTOR_CORRELATION) -> List[AlphaFactor]:
        """Select factors for active trading"""

        # Filter by minimum IC
        qualified_factors = [f for f in factors if abs(f.ic_score) > min_ic]

        if not qualified_factors:
            return []

        # Sort by IC
        qualified_factors.sort(key=lambda x: abs(x.ic_score), reverse=True)

        # Select uncorrelated factors
        selected = [qualified_factors[0]]

        for factor in qualified_factors[1:]:
            # Check correlation with selected factors
            correlated = False

            # Calculate actual correlation if we have cached values
            if factor.name in self.factor_values_cache:
                for selected_factor in selected:
                    if selected_factor.name in self.factor_values_cache:
                        corr = self.factor_values_cache[factor.name].corr(
                            self.factor_values_cache[selected_factor.name]
                        )
                        if abs(corr) > max_correlation:
                            correlated = True
                            break
            else:
                # Fallback: assume high correlation within same category
                for selected_factor in selected:
                    if factor.category == selected_factor.category:
                        correlated = True
                        break

            if not correlated:
                selected.append(factor)

            if len(selected) >= 10:  # Maximum active factors
                break

        return selected

    def construct_portfolio(self, market_data: pd.DataFrame) -> Dict[str, Any]:
        """Construct portfolio based on active factors"""

        # Get current regime
        regime = self.regime_detector.detect_regime(market_data)

        # Generate factor returns for optimization
        factor_returns = pd.DataFrame()

        for factor in self.active_factors:
            # Use actual factor values if available
            if factor.name in self.factor_values_cache:
                factor_values = self.factor_values_cache[factor.name]
                # Calculate factor returns
                ranks = factor_values.rank(pct=True, na_option='keep').fillna(0.5)
                long_weight = (ranks > 0.8).astype(float)
                short_weight = (ranks < 0.2).astype(float)

                # Normalize
                long_sum = long_weight.sum()
                short_sum = short_weight.sum()

                if long_sum > 0:
                    long_weight = long_weight / long_sum
                if short_sum > 0:
                    short_weight = short_weight / short_sum

                # Get market returns
                market_returns = market_data['close'].pct_change()

                # Factor portfolio returns
                factor_return = (long_weight - short_weight) * market_returns
                factor_returns[factor.name] = factor_return

        # Optimize weights
        if not factor_returns.empty and len(factor_returns) > 252:
            weights = self.portfolio_optimizer.optimize_portfolio(
                self.active_factors,
                factor_returns.iloc[-252:],  # Last year
                regime
            )
        else:
            # Equal weights if insufficient data
            weights = {f.name: 1.0/len(self.active_factors) for f in self.active_factors}

        self.current_weights = weights

        # Count categories
        category_counts = defaultdict(int)
        for f in self.active_factors:
            category_counts[f.category] += 1

        return {
            'weights': weights,
            'regime': regime.regime_type,
            'n_factors': len(weights),
            'categories': dict(category_counts)
        }

    def backtest_portfolio(self, market_data: pd.DataFrame,
                          initial_capital: float,
                          rebalance_freq: int) -> Tuple[pd.DataFrame, Dict[str, float]]:
        """Run realistic portfolio backtest"""

        portfolio_value = initial_capital
        portfolio_history = []
        positions = {}

        # Run backtest from day 100 to allow for lookback
        start_idx = min(100, len(market_data) // 3)

        for i in range(start_idx, len(market_data), 1):
            current_date = market_data.index[i]

            # Rebalance if needed
            if i % rebalance_freq == 0 or i == start_idx:
                # Get market data up to current point
                current_data = market_data.iloc[:i]

                # Rebalance portfolio
                portfolio_info = self.construct_portfolio(current_data)

                # Update positions based on new weights
                new_positions = {}
                for factor_name, weight in portfolio_info['weights'].items():
                    new_positions[factor_name] = portfolio_value * weight

                # Calculate transaction costs
                transaction_cost = 0
                for factor_name in set(list(positions.keys()) + list(new_positions.keys())):
                    old_value = positions.get(factor_name, 0)
                    new_value = new_positions.get(factor_name, 0)
                    transaction_cost += abs(new_value - old_value) * TRANSACTION_COST

                portfolio_value -= transaction_cost
                positions = new_positions

            # Calculate daily returns for each factor
            daily_pnl = 0

            for factor_name, position_value in positions.items():
                # Find the factor
                factor = next((f for f in self.active_factors if f.name == factor_name), None)

                if factor and factor_name in self.factor_values_cache:
                    # Get factor value for today
                    factor_values = self.factor_values_cache[factor_name]

                    if i < len(factor_values):
                        # Calculate factor portfolio return for today
                        ranks = factor_values.iloc[:i].rank(pct=True, na_option='keep').fillna(0.5)
                        if len(ranks) > 0:
                            current_rank = ranks.iloc[-1]

                            # Determine position direction
                            if current_rank > 0.8:
                                position_direction = 1
                            elif current_rank < 0.2:
                                position_direction = -1
                            else:
                                position_direction = 0

                            # Today's market return
                            if i > 0:
                                market_return = (market_data['close'].iloc[i] - market_data['close'].iloc[i-1]) / market_data['close'].iloc[i-1]
                            else:
                                market_return = 0

                            # Factor PnL
                            factor_pnl = position_value * position_direction * market_return
                            daily_pnl += factor_pnl

            # Update portfolio value
            portfolio_value += daily_pnl

            # Record history
            portfolio_history.append({
                'date': current_date,
                'value': portfolio_value,
                'pnl': daily_pnl,
                'positions': positions.copy()
            })

        # Convert to DataFrame
        history_df = pd.DataFrame(portfolio_history)

        if history_df.empty:
            return history_df, {
                'total_return': 0.0,
                'annual_return': 0.0,
                'sharpe_ratio': 0.0,
                'max_drawdown': 0.0,
                'win_rate': 0.5
            }

        # Calculate performance metrics
        returns = history_df['pnl'] / history_df['value'].shift(1)
        returns = returns.fillna(0)

        total_return = (portfolio_value - initial_capital) / initial_capital
        annual_return = (portfolio_value / initial_capital) ** (252 / len(history_df)) - 1 if len(history_df) > 0 else 0

        if returns.std() > 0:
            sharpe = np.sqrt(252) * returns.mean() / returns.std()
        else:
            sharpe = 0

        # Max drawdown
        cum_returns = (1 + returns).cumprod()
        running_max = cum_returns.expanding().max()
        drawdown = (running_max - cum_returns) / running_max
        max_drawdown = drawdown.max()

        metrics = {
            'total_return': total_return,
            'annual_return': annual_return,
            'sharpe_ratio': sharpe,
            'max_drawdown': max_drawdown,
            'win_rate': (returns > 0).mean()
        }

        return history_df, metrics

    def calculate_information_coefficient_decay(self,
                                              factor: AlphaFactor,
                                              market_data: pd.DataFrame) -> pd.DataFrame:
        """Calculate and visualize IC decay"""

        decay_profile = self.factor_evaluator.calculate_factor_decay(
            factor, market_data, max_lag=30
        )

        decay_df = pd.DataFrame([
            {'lag': lag, 'ic': ic}
            for lag, ic in decay_profile.items()
        ])

        return decay_df

# Market data generator
class MarketDataGenerator:
    """Generate realistic market data for demonstration"""

    @staticmethod
    def generate_market_data(n_days: int = 1000) -> pd.DataFrame:
        """Generate OHLCV market data"""

        dates = pd.date_range(end=datetime.now(), periods=n_days, freq='D')

        # Base price movement
        returns = np.random.normal(0.0005, 0.02, n_days)

        # Add regime changes
        regime_changes = [0, n_days//4, n_days//2, 3*n_days//4, n_days]

        for i in range(len(regime_changes)-1):
            start, end = regime_changes[i], regime_changes[i+1]

            if i % 4 == 0:  # Trending up
                returns[start:end] += np.random.normal(0.001, 0.001, end-start)
            elif i % 4 == 1:  # Mean reverting
                returns[start:end] = np.random.normal(0, 0.015, end-start)
            elif i % 4 == 2:  # Trending down
                returns[start:end] += np.random.normal(-0.001, 0.001, end-start)
            else:  # Volatile
                returns[start:end] = np.random.normal(0, 0.03, end-start)

        # Generate prices
        prices = 100 * np.exp(np.cumsum(returns))

        # Generate OHLCV
        data = pd.DataFrame({
            'open': prices * (1 + np.random.normal(0, 0.001, n_days)),
            'high': prices * (1 + np.abs(np.random.normal(0, 0.005, n_days))),
            'low': prices * (1 - np.abs(np.random.normal(0, 0.005, n_days))),
            'close': prices,
            'volume': np.random.lognormal(15, 0.5, n_days)
        }, index=dates)

        # Ensure OHLC consistency
        data['high'] = data[['open', 'high', 'close']].max(axis=1)
        data['low'] = data[['open', 'low', 'close']].min(axis=1)

        return data

# Visualization and Gradio Interface
def create_gradio_interface():
    """Create the main Gradio interface for the Alpha Mining Platform"""

    # Initialize the platform
    platform = None
    market_data_cache = {}

    def generate_and_evaluate_factors(n_days, n_factors, min_ic_threshold, openai_api_key):
        """Main function to generate and evaluate alpha factors"""

        try:
            # Initialize platform with API key
            nonlocal platform
            platform = AlphaMiningPlatform(openai_api_key=openai_api_key if openai_api_key else None)

            # Generate market data
            market_data = MarketDataGenerator.generate_market_data(int(n_days))
            market_data_cache['data'] = market_data

            # Discover factors
            discovered_factors = platform.discover_factors(market_data, int(n_factors))
            platform.discovered_factors = discovered_factors

            # Evaluate factors
            evaluation_df = platform.evaluate_factors(discovered_factors, market_data)

            # Select active factors
            platform.active_factors = platform.select_active_factors(
                discovered_factors,
                min_ic=float(min_ic_threshold)
            )

            # Construct portfolio
            portfolio_info = platform.construct_portfolio(market_data)

            # Create visualizations
            # 1. Factor Performance Heatmap
            fig_heatmap = create_factor_heatmap(evaluation_df)

            # 2. IC Distribution
            fig_ic_dist = create_ic_distribution(evaluation_df)

            # 3. Portfolio Weights
            fig_weights = create_portfolio_weights_chart(portfolio_info['weights'])

            # 4. Regime Timeline
            fig_regime = create_regime_timeline(market_data, platform.regime_detector)

            # Create summary statistics
            active_factor_names = [f.name for f in platform.active_factors]
            active_factors_df = evaluation_df[evaluation_df['name'].isin(active_factor_names)]
            avg_ic = active_factors_df['ic'].mean() if len(active_factors_df) > 0 else 0

            summary_stats = f"""
            ### Factor Discovery Summary
            - **Total Factors Discovered**: {len(discovered_factors)}
            - **Active Factors Selected**: {len(platform.active_factors)}
            - **Current Market Regime**: {portfolio_info['regime']}
            - **Average IC of Active Factors**: {avg_ic:.4f}
            - **Average Sharpe Ratio**: {evaluation_df['sharpe'].mean():.2f}

            ### Portfolio Construction
            - **Number of Factors in Portfolio**: {portfolio_info['n_factors']}
            - **Category Distribution**: {portfolio_info['categories']}

            ### LLM-Generated Factors
            - **Total LLM Factors**: {len([f for f in discovered_factors if 'LLM' in f.name or 'Fallback' in f.name])}
            - **LLM Factors Selected**: {len([f for f in platform.active_factors if 'LLM' in f.name or 'Fallback' in f.name])}
            """

            # Top factors table
            top_factors_df = evaluation_df.nlargest(10, 'ic')[
                ['name', 'category', 'ic', 'sharpe', 'turnover', 'regime']
            ].round(3)

            return fig_heatmap, fig_ic_dist, fig_weights, fig_regime, summary_stats, top_factors_df

        except Exception as e:
            print(f"Error in generate_and_evaluate_factors: {e}")
            # Return empty figures if error occurs
            empty_fig = go.Figure()
            empty_fig.add_annotation(text="Error generating data", x=0.5, y=0.5, showarrow=False)
            return empty_fig, empty_fig, empty_fig, empty_fig, f"Error: {str(e)}", pd.DataFrame()

    def analyze_factor_decay(factor_name):
        """Analyze IC decay for a specific factor"""

        try:
            if 'data' not in market_data_cache or platform is None:
                empty_fig = go.Figure()
                empty_fig.add_annotation(text="Please generate factors first", x=0.5, y=0.5, showarrow=False)
                return empty_fig, "Please generate factors first"

            market_data = market_data_cache['data']

            # Find factor
            factor = None
            for f in platform.discovered_factors:
                if f.name == factor_name:
                    factor = f
                    break

            if not factor:
                empty_fig = go.Figure()
                empty_fig.add_annotation(text=f"Factor '{factor_name}' not found", x=0.5, y=0.5, showarrow=False)
                return empty_fig, f"Factor '{factor_name}' not found"

            # Calculate decay
            decay_df = platform.calculate_information_coefficient_decay(factor, market_data)

            # Create decay plot
            fig = go.Figure()
            fig.add_trace(go.Scatter(
                x=decay_df['lag'],
                y=decay_df['ic'],
                mode='lines+markers',
                name='IC Decay',
                line=dict(color='blue', width=2),
                marker=dict(size=8)
            ))

            # Add exponential fit
            if len(decay_df) > 3:
                from scipy.optimize import curve_fit

                def exp_decay(x, a, b):
                    return a * np.exp(-b * x)

                try:
                    popt, _ = curve_fit(exp_decay, decay_df['lag'], np.abs(decay_df['ic']))
                    fit_y = exp_decay(decay_df['lag'], *popt)

                    fig.add_trace(go.Scatter(
                        x=decay_df['lag'],
                        y=fit_y,
                        mode='lines',
                        name='Exponential Fit',
                        line=dict(color='red', width=2, dash='dash')
                    ))

                    half_life = np.log(2) / popt[1] if popt[1] > 0 else np.inf
                    decay_stats = f"Half-life: {half_life:.1f} days"
                except:
                    decay_stats = "Could not fit exponential decay"
            else:
                decay_stats = "Insufficient data for decay analysis"

            fig.update_layout(
                title=f"Information Coefficient Decay: {factor_name}",
                xaxis_title="Prediction Horizon (days)",
                yaxis_title="Information Coefficient",
                height=400
            )

            return fig, decay_stats

        except Exception as e:
            print(f"Error in analyze_factor_decay: {e}")
            empty_fig = go.Figure()
            empty_fig.add_annotation(text=f"Error: {str(e)}", x=0.5, y=0.5, showarrow=False)
            return empty_fig, f"Error: {str(e)}"

    def backtest_portfolio(initial_capital, rebalance_freq):
        """Run portfolio backtest with actual factor returns"""

        try:
            if 'data' not in market_data_cache or platform is None or not platform.active_factors:
                empty_fig = go.Figure()
                empty_fig.add_annotation(text="Please generate and select factors first", x=0.5, y=0.5, showarrow=False)
                return empty_fig, "Please generate and select factors first", ""

            market_data = market_data_cache['data']
            initial_capital = float(initial_capital)
            rebalance_freq = int(rebalance_freq)

            # Run realistic backtest
            history_df, metrics = platform.backtest_portfolio(
                market_data, initial_capital, rebalance_freq
            )

            if history_df.empty:
                empty_fig = go.Figure()
                empty_fig.add_annotation(text="No backtest data generated", x=0.5, y=0.5, showarrow=False)
                return empty_fig, "No backtest data generated", ""

            # Create performance chart
            fig = make_subplots(
                rows=2, cols=1,
                subplot_titles=('Portfolio Value', 'Rolling Sharpe Ratio'),
                row_heights=[0.7, 0.3],
                vertical_spacing=0.1
            )

            # Portfolio value
            fig.add_trace(
                go.Scatter(
                    x=history_df['date'],
                    y=history_df['value'],
                    mode='lines',
                    name='Portfolio Value',
                    line=dict(color='blue', width=2)
                ),
                row=1, col=1
            )

            # Benchmark (buy and hold)
            market_returns = market_data['close'].pct_change().fillna(0)
            benchmark_value = initial_capital * (1 + market_returns).cumprod()
            benchmark_dates = market_data.index[market_data.index.isin(history_df['date'])]
            benchmark_value = benchmark_value[benchmark_dates]

            fig.add_trace(
                go.Scatter(
                    x=benchmark_dates,
                    y=benchmark_value,
                    mode='lines',
                    name='Buy & Hold Benchmark',
                    line=dict(color='gray', width=1, dash='dash')
                ),
                row=1, col=1
            )

            # Rolling Sharpe
            returns = history_df['pnl'] / history_df['value'].shift(1)
            returns = returns.fillna(0)

            if len(returns) > 60:
                rolling_returns = returns.rolling(window=60)
                rolling_sharpe = np.sqrt(252) * rolling_returns.mean() / (rolling_returns.std() + 1e-8)

                fig.add_trace(
                    go.Scatter(
                        x=history_df['date'],
                        y=rolling_sharpe,
                        mode='lines',
                        name='60-Day Sharpe',
                        line=dict(color='green', width=2)
                    ),
                    row=2, col=1
                )

            fig.update_layout(height=700, showlegend=True)
            fig.update_xaxes(title_text="Date", row=2, col=1)
            fig.update_yaxes(title_text="Portfolio Value", row=1, col=1)
            fig.update_yaxes(title_text="Sharpe Ratio", row=2, col=1)

            # Create metrics text
            metrics_text = f"""
            ### Backtest Performance Metrics
            - **Total Return**: {metrics['total_return']*100:.2f}%
            - **Annualized Return**: {metrics['annual_return']*100:.2f}%
            - **Sharpe Ratio**: {metrics['sharpe_ratio']:.2f}
            - **Maximum Drawdown**: {metrics['max_drawdown']*100:.2f}%
            - **Win Rate**: {metrics['win_rate']*100:.1f}%
            - **Number of Rebalances**: {len(history_df) // rebalance_freq}

            ### Active Factors Used
            {', '.join([f.name for f in platform.active_factors])}
            """

            return fig, metrics_text, ""

        except Exception as e:
            print(f"Error in backtest_portfolio: {e}")
            empty_fig = go.Figure()
            empty_fig.add_annotation(text=f"Error: {str(e)}", x=0.5, y=0.5, showarrow=False)
            return empty_fig, f"Error: {str(e)}", ""

    # Helper visualization functions
    def create_factor_heatmap(eval_df):
        """Create heatmap of factor performance by category"""
        try:
            if eval_df.empty:
                fig = go.Figure()
                fig.add_annotation(text="No data to display", x=0.5, y=0.5, showarrow=False)
                return fig

            # Create pivot table
            pivot_df = pd.pivot_table(
                eval_df,
                values='ic',
                index='category',
                columns='regime',
                aggfunc='mean',
                fill_value=0
            )

            if pivot_df.empty:
                fig = go.Figure()
                fig.add_annotation(text="No data to display", x=0.5, y=0.5, showarrow=False)
                return fig

            fig = go.Figure(data=go.Heatmap(
                z=pivot_df.values,
                x=pivot_df.columns,
                y=pivot_df.index,
                colorscale='RdBu',
                zmid=0,
                text=np.round(pivot_df.values, 3),
                texttemplate='%{text}',
                textfont={"size": 10}
            ))

            fig.update_layout(
                title="Average IC by Factor Category and Market Regime",
                xaxis_title="Market Regime",
                yaxis_title="Factor Category",
                height=400
            )

            return fig
        except Exception as e:
            print(f"Error in create_factor_heatmap: {e}")
            fig = go.Figure()
            fig.add_annotation(text=f"Error: {str(e)}", x=0.5, y=0.5, showarrow=False)
            return fig

    def create_ic_distribution(eval_df):
        """Create IC distribution plot"""
        try:
            if eval_df.empty:
                fig = go.Figure()
                fig.add_annotation(text="No data to display", x=0.5, y=0.5, showarrow=False)
                return fig

            fig = go.Figure()

            for category in eval_df['category'].unique():
                cat_data = eval_df[eval_df['category'] == category]

                fig.add_trace(go.Box(
                    y=cat_data['ic'],
                    name=category,
                    boxpoints='all',
                    jitter=0.3,
                    pointpos=-1.8
                ))

            fig.update_layout(
                title="Information Coefficient Distribution by Category",
                yaxis_title="Information Coefficient",
                showlegend=False,
                height=400
            )

            # Add reference line at 0
            fig.add_hline(y=0, line_dash="dash", line_color="gray")

            return fig
        except Exception as e:
            print(f"Error in create_ic_distribution: {e}")
            fig = go.Figure()
            fig.add_annotation(text=f"Error: {str(e)}", x=0.5, y=0.5, showarrow=False)
            return fig

    def create_portfolio_weights_chart(weights):
        """Create portfolio weights pie chart"""
        try:
            if not weights:
                fig = go.Figure()
                fig.add_annotation(
                    text="No active factors selected",
                    xref="paper", yref="paper",
                    x=0.5, y=0.5,
                    showarrow=False
                )
                fig.update_layout(height=400)
                return fig

            fig = go.Figure(data=[go.Pie(
                labels=list(weights.keys()),
                values=list(weights.values()),
                textposition='inside',
                textinfo='percent+label',
                hole=0.3
            )])

            fig.update_layout(
                title="Portfolio Factor Weights",
                height=400
            )

            return fig
        except Exception as e:
            print(f"Error in create_portfolio_weights_chart: {e}")
            fig = go.Figure()
            fig.add_annotation(text=f"Error: {str(e)}", x=0.5, y=0.5, showarrow=False)
            return fig

    def create_regime_timeline(market_data, regime_detector):
        """Create market regime timeline"""
        try:
            # Detect regimes at different points
            regime_history = []

            step = max(20, len(market_data) // 50)
            for i in range(60, len(market_data), step):
                regime = regime_detector.detect_regime(market_data.iloc[:i])
                regime_history.append({
                    'date': market_data.index[i-1],
                    'regime': regime.regime_type,
                    'confidence': regime.confidence
                })

            regime_df = pd.DataFrame(regime_history)

            if regime_df.empty:
                fig = go.Figure()
                fig.add_annotation(text="No regime data", x=0.5, y=0.5, showarrow=False)
                return fig

            # Create color map
            color_map = {
                'trending_up': 'green',
                'trending_down': 'red',
                'mean_reverting': 'blue',
                'volatile': 'orange'
            }

            fig = go.Figure()

            # Add regime bars
            for regime in color_map.keys():
                regime_data = regime_df[regime_df['regime'] == regime]

                if len(regime_data) > 0:
                    fig.add_trace(go.Scatter(
                        x=regime_data['date'],
                        y=regime_data['confidence'],
                        mode='markers',
                        name=regime,
                        marker=dict(
                            color=color_map[regime],
                            size=10,
                            symbol='square'
                        )
                    ))

            fig.update_layout(
                title="Market Regime Detection Timeline",
                xaxis_title="Date",
                yaxis_title="Confidence",
                height=300,
                yaxis_range=[0, 1]
            )

            return fig
        except Exception as e:
            print(f"Error in create_regime_timeline: {e}")
            fig = go.Figure()
            fig.add_annotation(text=f"Error: {str(e)}", x=0.5, y=0.5, showarrow=False)
            return fig

    # Create Gradio interface
    with gr.Blocks(title="Quantitative Alpha Mining Platform") as interface:
        gr.Markdown("""
        # Quantitative Alpha Mining Platform with LLM Discovery

        This platform leverages LLMs and machine learning to discover novel alpha factors from multiple data sources:
        - **Classical Factors**: Implementation of quantitative factors inspired by WorldQuant's research
        - **LLM-Generated Factors**: Novel factor formulas created using OpenAI's GPT models
        - **Alternative Data**: Sentiment analysis from earnings calls, SEC filings, news, and social media
        - **Regime-Aware Portfolio**: Hierarchical Risk Parity with dynamic regime adaptation

        Author: Spencer Purdy
        """)

        with gr.Tab("Factor Discovery"):
            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown("### Configuration")
                    n_days = gr.Slider(
                        minimum=500, maximum=2000, value=1000, step=100,
                        label="Market Data Days"
                    )
                    n_factors = gr.Slider(
                        minimum=10, maximum=50, value=20, step=5,
                        label="Number of Factors to Generate"
                    )
                    min_ic = gr.Slider(
                        minimum=0.01, maximum=0.1, value=0.02, step=0.01,
                        label="Minimum IC Threshold"
                    )

                    gr.Markdown("### API Configuration")
                    openai_api_key = gr.Textbox(
                        label="OpenAI API Key",
                        placeholder="sk-...",
                        type="password",
                        info="Optional: For LLM-generated factors (leave empty for fallback)"
                    )

                    generate_btn = gr.Button("Generate & Evaluate Factors", variant="primary")

            with gr.Row():
                factor_heatmap = gr.Plot(label="Factor Performance Heatmap")
                ic_distribution = gr.Plot(label="IC Distribution")

            with gr.Row():
                portfolio_weights = gr.Plot(label="Portfolio Weights")
                regime_timeline = gr.Plot(label="Market Regime Timeline")

            with gr.Row():
                summary_stats = gr.Markdown(label="Summary Statistics")
                top_factors_table = gr.DataFrame(label="Top Factors by IC")

        with gr.Tab("Factor Analysis"):
            with gr.Row():
                with gr.Column(scale=1):
                    factor_selector = gr.Dropdown(
                        choices=[],
                        label="Select Factor to Analyze"
                    )
                    analyze_btn = gr.Button("Analyze Factor Decay")

                with gr.Column(scale=2):
                    decay_plot = gr.Plot(label="IC Decay Analysis")
                    decay_stats = gr.Markdown(label="Decay Statistics")

        with gr.Tab("Portfolio Backtest"):
            with gr.Row():
                with gr.Column(scale=1):
                    initial_capital_input = gr.Number(
                        value=100000, label="Initial Capital", minimum=10000
                    )
                    rebalance_freq_input = gr.Slider(
                        minimum=5, maximum=60, value=20, step=5,
                        label="Rebalance Frequency (days)"
                    )

                    backtest_btn = gr.Button("Run Backtest", variant="primary")

                with gr.Column(scale=2):
                    backtest_plot = gr.Plot(label="Backtest Performance")
                    backtest_metrics = gr.Markdown(label="Performance Metrics")
                    backtest_error = gr.Markdown(visible=False)

        # Event handlers
        def update_factor_selector(fig1, fig2, fig3, fig4, stats, table):
            """Update factor selector with discovered factors"""
            if platform and platform.discovered_factors:
                choices = [f.name for f in platform.discovered_factors]
                return gr.Dropdown(choices=choices, value=choices[0] if choices else None)
            return gr.Dropdown(choices=[])

        generate_btn.click(
            fn=generate_and_evaluate_factors,
            inputs=[n_days, n_factors, min_ic, openai_api_key],
            outputs=[factor_heatmap, ic_distribution, portfolio_weights,
                    regime_timeline, summary_stats, top_factors_table]
        ).then(
            fn=update_factor_selector,
            inputs=[factor_heatmap, ic_distribution, portfolio_weights,
                   regime_timeline, summary_stats, top_factors_table],
            outputs=[factor_selector]
        )

        analyze_btn.click(
            fn=analyze_factor_decay,
            inputs=[factor_selector],
            outputs=[decay_plot, decay_stats]
        )

        backtest_btn.click(
            fn=backtest_portfolio,
            inputs=[initial_capital_input, rebalance_freq_input],
            outputs=[backtest_plot, backtest_metrics, backtest_error]
        )

        # Add examples
        gr.Examples(
            examples=[
                [1000, 20, 0.02],
                [1500, 30, 0.03],
                [2000, 40, 0.025]
            ],
            inputs=[n_days, n_factors, min_ic]
        )

        gr.Markdown("""
        ---
        **Note**: This system uses sophisticated machine learning models including optional LLM integration for factor discovery.
        For best results, provide an OpenAI API key for genuine LLM-generated factors. Without an API key, the system will use
        fallback factor generation methods. The simulation and analysis features work with or without the API key.
        All trading strategies are for demonstration purposes only.

        **API Key Information**:
        - OpenAI API Key: Get yours at https://platform.openai.com/api-keys
        """)

    return interface

# Launch the application
if __name__ == "__main__":
    interface = create_gradio_interface()
    interface.launch()