File size: 10,684 Bytes
f76f5bc d75f179 f76f5bc 949aa02 5ca330a 949aa02 dc45496 f76f5bc 949aa02 f76f5bc 949aa02 f76f5bc dc45496 949aa02 dc45496 f76f5bc 949aa02 f76f5bc 949aa02 f76f5bc 949aa02 f76f5bc 949aa02 f76f5bc d75f179 f76f5bc 949aa02 f76f5bc 5ca330a f76f5bc 5ca330a f76f5bc 949aa02 5ca330a f76f5bc 949aa02 5ca330a 949aa02 f76f5bc 949aa02 f76f5bc e5eb33d f76f5bc 949aa02 f76f5bc 949aa02 f76f5bc 949aa02 f76f5bc 949aa02 f76f5bc 949aa02 f76f5bc 949aa02 f76f5bc 949aa02 f76f5bc 949aa02 f76f5bc 949aa02 f76f5bc 5ca330a 949aa02 5ca330a f76f5bc 5ca330a f76f5bc bd126c6 f76f5bc 949aa02 f76f5bc d75f179 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import gradio as gr
import spaces
from transformers import pipeline
import torch
from typing import List, Dict, Optional
# Global variable to store pipelines
model_cache = {}
# Available models
AVAILABLE_MODELS = {
"Nous-1-4B": "apexion-ai/Nous-1-4B",
"Nous-1-8B": "apexion-ai/Nous-1-8B",
"Nous-1-2B": "apexion-ai/Nous-1-2B",
}
@spaces.GPU
def initialize_model(model_name):
global model_cache
if model_name not in AVAILABLE_MODELS:
raise ValueError(f"Model {model_name} not found in available models")
model_id = AVAILABLE_MODELS[model_name]
# Check if model is already cached
if model_id not in model_cache:
try:
model_cache[model_id] = pipeline(
"text-generation",
model=model_id,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True
)
except Exception as e:
# Fallback to CPU if GPU fails
model_cache[model_id] = pipeline(
"text-generation",
model=model_id,
torch_dtype=torch.float32,
device_map="cpu",
trust_remote_code=True
)
return model_cache[model_id]
@spaces.GPU
def generate_response(message, history, model_name, max_length=512, temperature=0.7, top_p=0.9):
"""Generate response using the selected model"""
# Initialize model inside the GPU-decorated function
try:
model_pipe = initialize_model(model_name)
except Exception as e:
return f"Error loading model {model_name}: {str(e)}"
# Format the conversation history
messages = []
# Add conversation history
for user_msg, assistant_msg in history:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
# Add current message
messages.append({"role": "user", "content": message})
# Generate response
try:
# Some models may not support the messages format, so we'll try different approaches
try:
# Try with messages format first
response = model_pipe(
messages,
max_length=max_length,
temperature=temperature,
top_p=top_p,
do_sample=True,
pad_token_id=model_pipe.tokenizer.eos_token_id,
return_full_text=False
)
except:
# Fallback to simple text format
conversation_text = ""
for msg in messages:
if msg["role"] == "user":
conversation_text += f"User: {msg['content']}\n"
else:
conversation_text += f"Assistant: {msg['content']}\n"
conversation_text += "Assistant:"
response = model_pipe(
conversation_text,
max_length=max_length,
temperature=temperature,
top_p=top_p,
do_sample=True,
pad_token_id=model_pipe.tokenizer.eos_token_id,
return_full_text=False
)
# Extract the generated text
if isinstance(response, list) and len(response) > 0:
generated_text = response[0]['generated_text']
else:
generated_text = str(response)
# Clean up the response
if isinstance(generated_text, list):
assistant_response = generated_text[-1]['content']
else:
# Remove the prompt and extract assistant response
assistant_response = str(generated_text).strip()
if "Assistant:" in assistant_response:
assistant_response = assistant_response.split("Assistant:")[-1].strip()
return assistant_response
except Exception as e:
return f"Error generating response: {str(e)}"
@spaces.GPU
def generate(
model: str,
user_input: str,
history: Optional[str] = "",
temperature: float = 0.7,
system_prompt: Optional[str] = "",
max_tokens: int = 512
):
"""
API endpoint for LLM generation
Args:
model: Model name to use (Nous-1-2B, Nous-1-4B, or Nous-1-8B)
user_input: Current user message/input
history: JSON string of conversation history in format [{"role": "user", "content": "..."}, {"role": "assistant", "content": "..."}]
temperature: Temperature for generation (0.1-2.0)
system_prompt: System prompt to guide the model
max_tokens: Maximum tokens to generate (1-8192)
Returns:
Generated response from the model
"""
# Validate model
if model not in AVAILABLE_MODELS:
return f"Error: Model {model} not available. Available models: {list(AVAILABLE_MODELS.keys())}"
# Initialize model
try:
model_pipe = initialize_model(model)
except Exception as e:
return f"Error loading model {model}: {str(e)}"
# Parse history if provided and convert to gradio format
gradio_history = []
if history and history.strip():
try:
import json
history_list = json.loads(history)
current_pair = [None, None]
for msg in history_list:
if isinstance(msg, dict) and "role" in msg and "content" in msg:
if msg["role"] == "user":
if current_pair[0] is not None:
gradio_history.append([current_pair[0], current_pair[1]])
current_pair = [msg["content"], None]
elif msg["role"] == "assistant":
current_pair[1] = msg["content"]
if current_pair[0] is not None:
gradio_history.append([current_pair[0], current_pair[1]])
except:
# If history parsing fails, continue without history
pass
# Add system prompt to user input if provided
final_user_input = user_input
if system_prompt and system_prompt.strip():
final_user_input = f"System: {system_prompt}\n\nUser: {user_input}"
# Use the original generate_response function
return generate_response(final_user_input, gradio_history, model, max_tokens, temperature, 0.9)
# Create the Gradio interface
def create_interface():
with gr.Blocks(title="Multi-Model Chat", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π Nous-1 Model Chat Interface
Chat with the Nous-1 models by Apexion AI.
**Available Models:**
- Nous-1-4B (4 billion parameters)
- Nous-1-8B (8 billion parameters)
- Nous-1-2B (2 billion parameters)
""")
with gr.Row():
model_selector = gr.Dropdown(
choices=list(AVAILABLE_MODELS.keys()),
value="Nous-1-4B",
label="Select Model",
info="Choose which model to use for generation"
)
chatbot = gr.Chatbot(
height=400,
placeholder="Select a model and start chatting...",
label="Chat"
)
msg = gr.Textbox(
placeholder="Type your message here...",
label="Message",
lines=2
)
with gr.Row():
submit_btn = gr.Button("Send", variant="primary")
clear_btn = gr.Button("Clear Chat", variant="secondary")
with gr.Accordion("Advanced Settings", open=False):
max_length = gr.Slider(
minimum=200,
maximum=8192,
value=2048,
step=50,
label="Max Length",
info="Maximum length of generated response"
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature",
info="Controls randomness in generation"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.1,
label="Top P",
info="Controls diversity via nucleus sampling"
)
# Event handlers
def user_message(message, history):
return "", history + [[message, None]]
def bot_response(history, model_name, max_len, temp, top_p):
if history:
user_message = history[-1][0]
bot_message = generate_response(
user_message,
history[:-1],
model_name,
max_len,
temp,
top_p
)
history[-1][1] = bot_message
return history
def model_changed(model_name):
return gr.update(placeholder=f"Chat with {model_name}...")
# Wire up the events
msg.submit(user_message, [msg, chatbot], [msg, chatbot]).then(
bot_response, [chatbot, model_selector, max_length, temperature, top_p], chatbot
)
submit_btn.click(user_message, [msg, chatbot], [msg, chatbot]).then(
bot_response, [chatbot, model_selector, max_length, temperature, top_p], chatbot
)
clear_btn.click(lambda: None, None, chatbot, queue=False)
model_selector.change(model_changed, model_selector, chatbot)
gr.Markdown("""
---
### About the Nous-1 Models
**Nous-1-2B**: 2 billion parameter model by Apexion AI, designed for fast and quick infrencing
**Nous-1-4B**: 4 billion parameter model by Apexion AI, optimisd for efficient conversation and text generation
**Nous-1-8B**: 8 billion parameter model by Apexion AI, offering enhanced capabilities and better performance for complex tasks
All models are designed for conversational AI and support various text generation tasks. The 8B model provides more sophisticated responses but requires more computational resources.
This Space uses ZeroGPU for efficient GPU allocation across both model sizes.
""")
return demo
# Launch the app
if __name__ == "__main__":
demo = create_interface()
# Enable API and launch
demo.launch(share=True) |