segment_test / app.py
zhiweili
auto dilate the hair mask
40b1711
raw
history blame
4.95 kB
import gradio as gr
import mediapipe as mp
import numpy as np
from PIL import Image
from mediapipe.tasks import python
from mediapipe.tasks.python import vision
from scipy.ndimage import binary_dilation, label
BG_COLOR = np.array([0, 0, 0], dtype=np.uint8) # black
MASK_COLOR = np.array([255, 255, 255], dtype=np.uint8) # white
MODEL_PATH = "checkpoints/selfie_multiclass_256x256.tflite"
category_options = ["hair", "clothes", "background"]
base_options = python.BaseOptions(model_asset_path=MODEL_PATH)
options = vision.ImageSegmenterOptions(base_options=base_options,output_category_mask=True)
segmenter = vision.ImageSegmenter.create_from_options(options)
labels = segmenter.labels
def segment(input_image, category):
image = mp.Image(image_format=mp.ImageFormat.SRGB, data=np.asarray(input_image))
segmentation_result = segmenter.segment(image)
category_mask = segmentation_result.category_mask
category_mask_np = category_mask.numpy_view()
if category == "hair":
target_mask = get_hair_mask(category_mask_np, should_dilate=True)
elif category == "clothes":
target_mask = get_clothes_mask(category_mask_np)
else:
target_mask = category_mask_np == 0
# Generate solid color images for showing the output segmentation mask.
image_data = image.numpy_view()
fg_image = np.zeros(image_data.shape, dtype=np.uint8)
fg_image[:] = MASK_COLOR
bg_image = np.zeros(image_data.shape, dtype=np.uint8)
bg_image[:] = BG_COLOR
condition = np.stack((target_mask,) * 3, axis=-1) > 0.2
output_image = np.where(condition, fg_image, bg_image)
output_image = Image.fromarray(output_image)
return output_image
def get_clothes_mask(category_mask_np):
body_skin_mask = category_mask_np == 2
clothes_mask = category_mask_np == 4
combined_mask = np.logical_or(body_skin_mask, clothes_mask)
combined_mask = binary_dilation(combined_mask, iterations=4)
return combined_mask
def get_hair_mask(category_mask_np, should_dilate=False):
hair_mask = category_mask_np == 1
hair_mask = binary_dilation(hair_mask, iterations=4)
if not should_dilate:
return hair_mask
body_skin_mask = category_mask_np == 2
face_skin_mask = category_mask_np == 3
clothes_mask = category_mask_np == 4
face_indices = np.where(face_skin_mask)
min_face_y = np.min(face_indices[0])
labeled_hair, hair_features = label(hair_mask)
top_hair_mask = np.zeros_like(hair_mask)
for i in range(1, hair_features + 1):
component_mask = labeled_hair == i
component_indices = np.where(component_mask)
min_component_y = np.min(component_indices[0])
if min_component_y <= min_face_y:
top_hair_mask[component_mask] = True
expanded_face_mask = binary_dilation(face_skin_mask, iterations=40)
# Combine the reference masks (body, clothes)
reference_mask = np.logical_or(body_skin_mask, clothes_mask)
# Exclude the expanded face mask from the reference mask
reference_mask = np.logical_and(reference_mask, ~expanded_face_mask)
# Expand the hair mask downward until it reaches the reference areas
expanded_hair_mask = top_hair_mask
while not np.any(np.logical_and(expanded_hair_mask, reference_mask)):
expanded_hair_mask = binary_dilation(expanded_hair_mask, iterations=10)
# Trim the expanded_hair_mask
# 1. Remove the area above hair_mask by 20 pixels
hair_indices = np.where(hair_mask)
min_hair_y = np.min(hair_indices[0]) - 20
expanded_hair_mask[:min_hair_y, :] = 0
# 2. Remove the areas on both sides that exceed the clothing coordinates
clothes_indices = np.where(clothes_mask)
min_clothes_x = np.min(clothes_indices[1])
max_clothes_x = np.max(clothes_indices[1])
expanded_hair_mask[:, :min_clothes_x] = 0
expanded_hair_mask[:, max_clothes_x+1:] = 0
# exclude the face-skin, body-skin and clothes areas
expanded_hair_mask = np.logical_and(expanded_hair_mask, ~face_skin_mask)
expanded_hair_mask = np.logical_and(expanded_hair_mask, ~body_skin_mask)
expanded_hair_mask = np.logical_and(expanded_hair_mask, ~clothes_mask)
# combine the hair mask with the expanded hair mask
expanded_hair_mask = np.logical_or(hair_mask, expanded_hair_mask)
return expanded_hair_mask
with gr.Blocks() as app:
with gr.Row():
with gr.Column():
input_image = gr.Image(type='pil', label='Upload image')
category = gr.Dropdown(label='Category', choices=category_options, value=category_options[0])
submit_btn = gr.Button(value='Submit', variant='primary')
with gr.Column():
output_image = gr.Image(type='pil', label='Image Output')
submit_btn.click(
fn=segment,
inputs=[
input_image,
category,
],
outputs=[output_image]
)
app.launch(debug=False, show_error=True)