File size: 35,701 Bytes
dc10ed1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
import gradio as gr
import boto3
import json
import re
import logging
import os
import tempfile
import shutil
from datetime import datetime

# Try to import ReportLab (needed for PDF generation)
try:
    from reportlab.lib.pagesizes import letter
    from reportlab.lib import colors
    from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle
    from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
    REPORTLAB_AVAILABLE = True
except ImportError:
    logger.warning("ReportLab library not available - PDF export will be disabled")
    REPORTLAB_AVAILABLE = False

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# AWS credentials for Bedrock API
AWS_ACCESS_KEY = os.getenv("AWS_ACCESS_KEY", "")
AWS_SECRET_KEY = os.getenv("AWS_SECRET_KEY", "")
AWS_REGION = os.getenv("AWS_REGION", "us-east-1")

# Initialize Bedrock client if credentials are available
bedrock_client = None
if AWS_ACCESS_KEY and AWS_SECRET_KEY:
    try:
        bedrock_client = boto3.client(
            'bedrock-runtime',
            aws_access_key_id=AWS_ACCESS_KEY,
            aws_secret_access_key=AWS_SECRET_KEY,
            region_name=AWS_REGION
        )
        logger.info("Bedrock client initialized successfully")
    except Exception as e:
        logger.error(f"Failed to initialize Bedrock client: {str(e)}")

# Create data directories if they don't exist
DATA_DIR = os.environ.get("DATA_DIR", "patient_data")
DOWNLOADS_DIR = os.path.join(DATA_DIR, "downloads")

def ensure_data_dirs():
    """Ensure data directories exist"""
    try:
        os.makedirs(DATA_DIR, exist_ok=True)
        os.makedirs(DOWNLOADS_DIR, exist_ok=True)
        logger.info(f"Data directories created: {DATA_DIR}, {DOWNLOADS_DIR}")
    except Exception as e:
        logger.warning(f"Could not create data directories: {str(e)}")
        # Fallback to tmp directory on HF Spaces
        global DOWNLOADS_DIR
        DOWNLOADS_DIR = os.path.join(tempfile.gettempdir(), "casl_downloads")
        os.makedirs(DOWNLOADS_DIR, exist_ok=True)
        logger.info(f"Using fallback directory: {DOWNLOADS_DIR}")

# Initialize data directories
ensure_data_dirs()

# Sample transcript for the demo
SAMPLE_TRANSCRIPT = """*PAR: today I would &-um like to talk about &-um a fun trip I took last &-um summer with my family.
*PAR: we went to the &-um &-um beach [//] no to the mountains [//] I mean the beach actually.
*PAR: there was lots of &-um &-um swimming and &-um sun.
*PAR: we [/] we stayed for &-um three no [//] four days in a &-um hotel near the water [: ocean] [*].
*PAR: my favorite part was &-um building &-um castles with sand.
*PAR: sometimes I forget [//] forgetted [: forgot] [*] what they call those things we built.
*PAR: my brother he [//] he helped me dig a big hole.
*PAR: we saw [/] saw fishies [: fish] [*] swimming in the water.
*PAR: sometimes I wonder [/] wonder where fishies [: fish] [*] go when it's cold.
*PAR: maybe they have [/] have houses under the water.
*PAR: after swimming we [//] I eat [: ate] [*] &-um ice cream with &-um chocolate things on top.
*PAR: what do you call those &-um &-um sprinkles! that's the word.
*PAR: my mom said to &-um that I could have &-um two scoops next time.
*PAR: I want to go back to the beach [/] beach next year."""

def read_cha_file(file_path):
    """Read and parse a .cha transcript file"""
    try:
        with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
            content = f.read()
            
        # Extract participant lines (starting with *PAR:)
        par_lines = []
        for line in content.splitlines():
            if line.startswith('*PAR:'):
                par_lines.append(line)
                
        # If no PAR lines found, just return the whole content
        if not par_lines:
            return content
            
        return '\n'.join(par_lines)
    
    except Exception as e:
        logger.error(f"Error reading CHA file: {str(e)}")
        return ""

def process_upload(file):
    """Process an uploaded file (PDF, text, or CHA)"""
    if file is None:
        return ""
    
    file_path = file.name
    if file_path.endswith('.pdf'):
        # For PDF, we would need PyPDF2 or similar
        return "PDF upload not supported in this simple version"
    elif file_path.endswith('.cha'):
        return read_cha_file(file_path)
    else:
        with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
            return f.read()

def call_bedrock(prompt, max_tokens=4096):
    """Call the AWS Bedrock API to analyze text using Claude"""
    if not bedrock_client:
        return "AWS credentials not configured. Using demo response instead."
    
    try:
        body = json.dumps({
            "anthropic_version": "bedrock-2023-05-31",
            "max_tokens": max_tokens,
            "messages": [
                {
                    "role": "user",
                    "content": prompt
                }
            ],
            "temperature": 0.3,
            "top_p": 0.9
        })

        modelId = 'anthropic.claude-3-sonnet-20240229-v1:0'
        response = bedrock_client.invoke_model(
            body=body, 
            modelId=modelId, 
            accept='application/json', 
            contentType='application/json'
        )
        response_body = json.loads(response.get('body').read())
        return response_body['content'][0]['text']
    except Exception as e:
        logger.error(f"Error in call_bedrock: {str(e)}")
        return f"Error: {str(e)}"

def generate_demo_response(prompt):
    """Generate a simulated response for demo purposes"""
    # This function generates a realistic but fake response for demo purposes
    # In a real deployment, you would call an actual LLM API
    
    return """<SPEECH_FACTORS_START>
Difficulty producing fluent speech: 8, 65
Examples:
- "today I would &-um like to talk about &-um a fun trip I took last &-um summer with my family"
- "we went to the &-um &-um beach [//] no to the mountains [//] I mean the beach actually"

Word retrieval issues: 6, 72
Examples:
- "what do you call those &-um &-um sprinkles! that's the word"
- "sometimes I forget [//] forgetted [: forgot] [*] what they call those things we built"

Grammatical errors: 4, 58
Examples:
- "after swimming we [//] I eat [: ate] [*] &-um ice cream"
- "sometimes I forget [//] forgetted [: forgot] [*] what they call those things we built"

Repetitions and revisions: 5, 62
Examples:
- "we [/] we stayed for &-um three no [//] four days"
- "we went to the &-um &-um beach [//] no to the mountains [//] I mean the beach actually"
<SPEECH_FACTORS_END>

<CASL_SKILLS_START>
Lexical/Semantic Skills: Standard Score (92), Percentile Rank (30%), Average Performance
Examples:
- "what do you call those &-um &-um sprinkles! that's the word"
- "we went to the &-um &-um beach [//] no to the mountains [//] I mean the beach actually"

Syntactic Skills: Standard Score (87), Percentile Rank (19%), Low Average Performance
Examples:
- "my brother he [//] he helped me dig a big hole"
- "after swimming we [//] I eat [: ate] [*] &-um ice cream with &-um chocolate things on top"

Supralinguistic Skills: Standard Score (90), Percentile Rank (25%), Average Performance
Examples:
- "sometimes I wonder [/] wonder where fishies [: fish] [*] go when it's cold"
- "maybe they have [/] have houses under the water"
<CASL_SKILLS_END>

<TREATMENT_RECOMMENDATIONS_START>
- Implement word-finding strategies with semantic cuing focused on everyday objects and activities, using the patient's beach experience as a context (e.g., "sprinkles," "castles")
- Practice structured narrative tasks with visual supports to reduce revisions and improve sequencing
- Use sentence formulation exercises focusing on verb tense consistency (addressing errors like "forgetted" and "eat" for "ate")
- Incorporate self-monitoring techniques to help identify and correct grammatical errors
- Work on increasing vocabulary specificity (e.g., "things on top" to "sprinkles")
<TREATMENT_RECOMMENDATIONS_END>

<EXPLANATION_START>
This child demonstrates moderate word-finding difficulties with compensatory strategies including fillers ("&-um") and repetitions. The frequent use of self-corrections shows good metalinguistic awareness, but the pauses and repairs impact conversational fluency. Syntactic errors primarily involve verb tense inconsistency. Overall, the pattern suggests a mild-to-moderate language disorder with stronger receptive than expressive skills.
<EXPLANATION_END>

<ADDITIONAL_ANALYSIS_START>
The child shows relative strengths in maintaining topic coherence and conveying a complete narrative structure despite the language challenges. The pattern of errors suggests that word-finding difficulties and processing speed are primary concerns rather than conceptual or cognitive issues. Semantic network activities that strengthen word associations would likely be beneficial, particularly when paired with visual supports.
<ADDITIONAL_ANALYSIS_END>

<DIAGNOSTIC_IMPRESSIONS_START>
Based on the language sample, this child presents with a profile consistent with a mild-to-moderate expressive language disorder. The most prominent features include:

1. Word-finding difficulties characterized by fillers, pauses, and self-corrections when attempting to retrieve specific vocabulary
2. Grammatical challenges primarily affecting verb tense consistency and morphological markers
3. Relatively intact narrative structure and topic maintenance

These findings suggest intervention should focus on word retrieval strategies, grammatical form practice, and continued support for narrative development, with an emphasis on fluency and self-monitoring.
<DIAGNOSTIC_IMPRESSIONS_END>

<ERROR_EXAMPLES_START>
Word-finding difficulties:
- "what do you call those &-um &-um sprinkles! that's the word"
- "we went to the &-um &-um beach [//] no to the mountains [//] I mean the beach actually"
- "there was lots of &-um &-um swimming and &-um sun"

Grammatical errors:
- "after swimming we [//] I eat [: ate] [*] &-um ice cream"
- "sometimes I forget [//] forgetted [: forgot] [*] what they call those things we built"
- "we saw [/] saw fishies [: fish] [*] swimming in the water"

Repetitions and revisions:
- "we [/] we stayed for &-um three no [//] four days"
- "I want to go back to the beach [/] beach next year"
- "sometimes I wonder [/] wonder where fishies [: fish] [*] go when it's cold"
<ERROR_EXAMPLES_END>"""

def parse_casl_response(response):
    """Parse the LLM response for CASL analysis into structured data"""
    # Extract speech factors section using section markers
    speech_factors_section = ""
    factors_pattern = re.compile(r"<SPEECH_FACTORS_START>(.*?)<SPEECH_FACTORS_END>", re.DOTALL)
    factors_match = factors_pattern.search(response)
    
    if factors_match:
        speech_factors_section = factors_match.group(1).strip()
    else:
        speech_factors_section = "Error extracting speech factors from analysis."
    
    # Extract CASL skills section
    casl_section = ""
    casl_pattern = re.compile(r"<CASL_SKILLS_START>(.*?)<CASL_SKILLS_END>", re.DOTALL)
    casl_match = casl_pattern.search(response)
    
    if casl_match:
        casl_section = casl_match.group(1).strip()
    else:
        casl_section = "Error extracting CASL skills from analysis."
    
    # Extract treatment recommendations
    treatment_text = ""
    treatment_pattern = re.compile(r"<TREATMENT_RECOMMENDATIONS_START>(.*?)<TREATMENT_RECOMMENDATIONS_END>", re.DOTALL)
    treatment_match = treatment_pattern.search(response)
    
    if treatment_match:
        treatment_text = treatment_match.group(1).strip()
    else:
        treatment_text = "Error extracting treatment recommendations from analysis."
    
    # Extract explanation section
    explanation_text = ""
    explanation_pattern = re.compile(r"<EXPLANATION_START>(.*?)<EXPLANATION_END>", re.DOTALL)
    explanation_match = explanation_pattern.search(response)
    
    if explanation_match:
        explanation_text = explanation_match.group(1).strip()
    else:
        explanation_text = "Error extracting clinical explanation from analysis."
    
    # Extract additional analysis
    additional_analysis = ""
    additional_pattern = re.compile(r"<ADDITIONAL_ANALYSIS_START>(.*?)<ADDITIONAL_ANALYSIS_END>", re.DOTALL)
    additional_match = additional_pattern.search(response)
    
    if additional_match:
        additional_analysis = additional_match.group(1).strip()
    
    # Extract diagnostic impressions
    diagnostic_impressions = ""
    diagnostic_pattern = re.compile(r"<DIAGNOSTIC_IMPRESSIONS_START>(.*?)<DIAGNOSTIC_IMPRESSIONS_END>", re.DOTALL)
    diagnostic_match = diagnostic_pattern.search(response)
    
    if diagnostic_match:
        diagnostic_impressions = diagnostic_match.group(1).strip()
    
    # Extract specific error examples
    specific_errors_text = ""
    errors_pattern = re.compile(r"<ERROR_EXAMPLES_START>(.*?)<ERROR_EXAMPLES_END>", re.DOTALL)
    errors_match = errors_pattern.search(response)
    
    if errors_match:
        specific_errors_text = errors_match.group(1).strip()
    
    # Create full report text
    full_report = f"""
## Speech Factors Analysis

{speech_factors_section}

## CASL Skills Assessment

{casl_section}

## Treatment Recommendations

{treatment_text}

## Clinical Explanation

{explanation_text}
"""
    
    if additional_analysis:
        full_report += f"\n## Additional Analysis\n\n{additional_analysis}"
    
    if diagnostic_impressions:
        full_report += f"\n## Diagnostic Impressions\n\n{diagnostic_impressions}"
    
    if specific_errors_text:
        full_report += f"\n## Detailed Error Examples\n\n{specific_errors_text}"
    
    return {
        'speech_factors': speech_factors_section,
        'casl_data': casl_section,
        'treatment_suggestions': treatment_text,
        'explanation': explanation_text,
        'additional_analysis': additional_analysis,
        'diagnostic_impressions': diagnostic_impressions,
        'specific_errors': specific_errors_text,
        'full_report': full_report,
        'raw_response': response
    }

def analyze_transcript(transcript, age, gender):
    """Analyze a speech transcript using Claude"""
    # CASL-2 assessment cheat sheet
    cheat_sheet = """
    # Speech-Language Pathologist Analysis Cheat Sheet
    
    ## Types of Speech Patterns to Identify:
    
    1. Difficulty producing fluent, grammatical speech
       - Fillers (um, uh) and pauses
       - False starts and revisions
       - Incomplete sentences
    
    2. Word retrieval issues
       - Pauses before content words
       - Circumlocutions (talking around a word)
       - Word substitutions
    
    3. Grammatical errors
       - Verb tense inconsistencies
       - Subject-verb agreement errors
       - Morphological errors (plurals, possessives)
    
    4. Repetitions and revisions
       - Word or phrase repetitions [/]
       - Self-corrections [//]
       - Retracing
    
    5. Neologisms
       - Made-up words
       - Word blends
    
    6. Perseveration
       - Inappropriate repetition of ideas
       - Recurring themes
    
    7. Comprehension issues
       - Topic maintenance difficulties
       - Non-sequiturs
       - Inappropriate responses
    """
    
    # Instructions for the analysis
    instructions = """
    Analyze this speech transcript to identify specific patterns and provide a detailed CASL-2 (Comprehensive Assessment of Spoken Language) assessment.
    
    For each speech pattern you identify:
    1. Count the occurrences in the transcript
    2. Estimate a percentile (how typical/atypical this is for the age)
    3. Provide DIRECT QUOTES from the transcript as evidence
    
    Then assess the following CASL-2 domains:
    
    1. Lexical/Semantic Skills:
       - Assess vocabulary diversity, word-finding abilities, semantic precision
       - Provide Standard Score (mean=100, SD=15), percentile rank, and performance level
       - Include SPECIFIC QUOTES as evidence
    
    2. Syntactic Skills:
       - Evaluate grammatical accuracy, sentence complexity, morphological skills
       - Provide Standard Score, percentile rank, and performance level
       - Include SPECIFIC QUOTES as evidence
    
    3. Supralinguistic Skills:
       - Assess figurative language use, inferencing, and abstract reasoning
       - Provide Standard Score, percentile rank, and performance level
       - Include SPECIFIC QUOTES as evidence
    
    YOUR RESPONSE MUST USE THESE EXACT SECTION MARKERS FOR PARSING:
    
    <SPEECH_FACTORS_START>
    Difficulty producing fluent, grammatical speech: (occurrences), (percentile)
    Examples:
    - "(direct quote from transcript)"
    - "(direct quote from transcript)"
    
    Word retrieval issues: (occurrences), (percentile)
    Examples:
    - "(direct quote from transcript)"
    - "(direct quote from transcript)"
    
    (And so on for each factor)
    <SPEECH_FACTORS_END>
    
    <CASL_SKILLS_START>
    Lexical/Semantic Skills: Standard Score (X), Percentile Rank (X%), Performance Level
    Examples:
    - "(direct quote showing strength or weakness)"
    - "(direct quote showing strength or weakness)"
    
    Syntactic Skills: Standard Score (X), Percentile Rank (X%), Performance Level
    Examples:
    - "(direct quote showing strength or weakness)"
    - "(direct quote showing strength or weakness)"
    
    Supralinguistic Skills: Standard Score (X), Percentile Rank (X%), Performance Level
    Examples:
    - "(direct quote showing strength or weakness)"
    - "(direct quote showing strength or weakness)"
    <CASL_SKILLS_END>
    
    <TREATMENT_RECOMMENDATIONS_START>
    - (treatment recommendation)
    - (treatment recommendation)
    - (treatment recommendation)
    <TREATMENT_RECOMMENDATIONS_END>
    
    <EXPLANATION_START>
    (brief diagnostic rationale based on findings)
    <EXPLANATION_END>
    
    <ADDITIONAL_ANALYSIS_START>
    (specific insights that would be helpful for treatment planning)
    <ADDITIONAL_ANALYSIS_END>
    
    <DIAGNOSTIC_IMPRESSIONS_START>
    (summarize findings across domains using specific examples and clear explanations)
    <DIAGNOSTIC_IMPRESSIONS_END>
    
    <ERROR_EXAMPLES_START>
    (Copy all the specific quote examples here again, organized by error type or skill domain)
    <ERROR_EXAMPLES_END>
    
    MOST IMPORTANT: 
    1. Use EXACTLY the section markers provided (like <SPEECH_FACTORS_START>) to make parsing reliable
    2. For EVERY factor and domain you analyze, you MUST provide direct quotes from the transcript as evidence
    3. Be very specific and cite the exact text
    4. Do not omit any of the required sections
    """
    
    # Prepare prompt for Claude with the user's role context
    role_context = """
    You are a speech pathologist, a healthcare professional who specializes in evaluating, diagnosing, and treating communication disorders, including speech, language, cognitive-communication, voice, swallowing, and fluency disorders. Your role is to help patients improve their speech and communication skills through various therapeutic techniques and exercises.
    
    You are working with a student with speech impediments.
    
    The most important thing is that you stay kind to the child. Be constructive and helpful rather than critical.
    """
    
    prompt = f"""
    {role_context}
    
    You are analyzing a transcript for a patient who is {age} years old and {gender}.
    
    TRANSCRIPT:
    {transcript}
    
    {cheat_sheet}
    
    {instructions}
    
    Remember to be precise but compassionate in your analysis. Use direct quotes from the transcript for every factor and domain you analyze.
    """
    
    # Call the appropriate API or fallback to demo mode
    if bedrock_client:
        response = call_bedrock(prompt)
    else:
        response = generate_demo_response(prompt)
    
    # Parse the response
    results = parse_casl_response(response)
    
    return results

def export_pdf(results, patient_name="", record_id="", age="", gender="", assessment_date="", clinician=""):
    """Export analysis results to a PDF report"""
    # Check if ReportLab is available
    if not REPORTLAB_AVAILABLE:
        return "ERROR: PDF export is not available - ReportLab library is not installed. Please run 'pip install reportlab'."
    
    try:
        # Generate a safe filename
        if patient_name:
            safe_name = f"{patient_name.replace(' ', '_')}"
        else:
            safe_name = f"speech_analysis_{datetime.now().strftime('%Y%m%d%H%M%S')}"
        
        # Make sure the downloads directory exists
        try:
            os.makedirs(DOWNLOADS_DIR, exist_ok=True)
        except Exception as e:
            logger.warning(f"Could not access downloads directory: {str(e)}")
            # Fallback to temp directory
            global DOWNLOADS_DIR
            DOWNLOADS_DIR = os.path.join(tempfile.gettempdir(), "casl_downloads")
            os.makedirs(DOWNLOADS_DIR, exist_ok=True)
        
        # Create the PDF path in our downloads directory
        pdf_path = os.path.join(DOWNLOADS_DIR, f"{safe_name}.pdf")
        
        # Create the PDF document
        doc = SimpleDocTemplate(pdf_path, pagesize=letter)
        styles = getSampleStyleSheet()
        
        # Create enhanced custom styles
        styles.add(ParagraphStyle(
            name='Heading1',
            parent=styles['Heading1'],
            fontSize=16,
            spaceAfter=12,
            textColor=colors.navy
        ))
        
        styles.add(ParagraphStyle(
            name='Heading2',
            parent=styles['Heading2'],
            fontSize=14,
            spaceAfter=10,
            spaceBefore=10,
            textColor=colors.darkblue
        ))
        
        styles.add(ParagraphStyle(
            name='Heading3',
            parent=styles['Heading2'],
            fontSize=12,
            spaceAfter=8,
            spaceBefore=8,
            textColor=colors.darkblue
        ))
        
        styles.add(ParagraphStyle(
            name='BodyText',
            parent=styles['BodyText'],
            fontSize=11,
            spaceAfter=8,
            leading=14
        ))
        
        styles.add(ParagraphStyle(
            name='BulletPoint',
            parent=styles['BodyText'],
            fontSize=11,
            leftIndent=20,
            firstLineIndent=-15,
            spaceAfter=4,
            leading=14
        ))
        
        # Convert markdown to PDF elements
        story = []
        
        # Add title and date
        story.append(Paragraph("Speech Language Assessment Report", styles['Title']))
        story.append(Spacer(1, 12))
        
        # Add patient information table
        if patient_name or record_id or age or gender:
            # Prepare patient info data
            data = []
            if patient_name:
                data.append(["Patient Name:", patient_name])
            if record_id:
                data.append(["Record ID:", record_id])
            if age:
                data.append(["Age:", f"{age} years"])
            if gender:
                data.append(["Gender:", gender])
            if assessment_date:
                data.append(["Assessment Date:", assessment_date])
            if clinician:
                data.append(["Clinician:", clinician])
            
            if data:
                # Create a table with the data
                patient_table = Table(data, colWidths=[120, 350])
                patient_table.setStyle(TableStyle([
                    ('BACKGROUND', (0, 0), (0, -1), colors.lightgrey),
                    ('TEXTCOLOR', (0, 0), (0, -1), colors.darkblue),
                    ('ALIGN', (0, 0), (0, -1), 'RIGHT'),
                    ('ALIGN', (1, 0), (1, -1), 'LEFT'),
                    ('FONTNAME', (0, 0), (0, -1), 'Helvetica-Bold'),
                    ('BOTTOMPADDING', (0, 0), (-1, -1), 6),
                    ('TOPPADDING', (0, 0), (-1, -1), 6),
                    ('GRID', (0, 0), (-1, -1), 0.5, colors.lightgrey),
                ]))
                story.append(patient_table)
                story.append(Spacer(1, 12))
        
        # Add clinical analysis sections
        story.append(Paragraph("Speech Factors Analysis", styles['Heading1']))
        speech_factors_paragraphs = []
        for line in results['speech_factors'].split('\n'):
            line = line.strip()
            if not line:
                continue
            if line.startswith('- '):
                story.append(Paragraph(f"• {line[2:]}", styles['BulletPoint']))
            else:
                story.append(Paragraph(line, styles['BodyText']))
        story.append(Spacer(1, 12))
        
        story.append(Paragraph("CASL Skills Assessment", styles['Heading1']))
        for line in results['casl_data'].split('\n'):
            line = line.strip()
            if not line:
                continue
            if line.startswith('- '):
                story.append(Paragraph(f"• {line[2:]}", styles['BulletPoint']))
            else:
                story.append(Paragraph(line, styles['BodyText']))
        story.append(Spacer(1, 12))
        
        story.append(Paragraph("Treatment Recommendations", styles['Heading1']))
        
        # Process treatment recommendations as bullet points
        for line in results['treatment_suggestions'].split('\n'):
            line = line.strip()
            if not line:
                continue
            if line.startswith('- '):
                story.append(Paragraph(f"• {line[2:]}", styles['BulletPoint']))
            else:
                story.append(Paragraph(line, styles['BodyText']))
        
        story.append(Spacer(1, 12))
        
        story.append(Paragraph("Clinical Explanation", styles['Heading1']))
        story.append(Paragraph(results['explanation'], styles['BodyText']))
        story.append(Spacer(1, 12))
        
        if results['additional_analysis']:
            story.append(Paragraph("Additional Analysis", styles['Heading1']))
            story.append(Paragraph(results['additional_analysis'], styles['BodyText']))
            story.append(Spacer(1, 12))
        
        if results['diagnostic_impressions']:
            story.append(Paragraph("Diagnostic Impressions", styles['Heading1']))
            story.append(Paragraph(results['diagnostic_impressions'], styles['BodyText']))
            story.append(Spacer(1, 12))
        
        # Add footer with date
        footer_text = f"Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
        story.append(Spacer(1, 20))
        story.append(Paragraph(footer_text, ParagraphStyle(
            name='Footer',
            parent=styles['Normal'],
            fontSize=8,
            textColor=colors.grey
        )))
        
        # Build the PDF
        doc.build(story)
        
        logger.info(f"Report saved as PDF: {pdf_path}")
        return pdf_path
    
    except Exception as e:
        logger.exception("Error creating PDF")
        return f"Error creating PDF: {str(e)}"

def create_interface():
    """Create the Gradio interface"""
    # Set a theme compatible with Hugging Face Spaces
    theme = gr.themes.Soft(
        primary_hue="blue",
        secondary_hue="indigo",
    )
    
    with gr.Blocks(title="Simple CASL Analysis Tool", theme=theme) as app:
        gr.Markdown("# CASL Analysis Tool")
        gr.Markdown("A simplified tool for analyzing speech transcripts using CASL framework")
        
        with gr.Row():
            with gr.Column(scale=1):
                # Patient info
                gr.Markdown("### Patient Information")
                patient_name = gr.Textbox(label="Patient Name", placeholder="Enter patient name")
                record_id = gr.Textbox(label="Record ID", placeholder="Enter record ID")
                
                with gr.Row():
                    age = gr.Number(label="Age", value=8, minimum=1, maximum=120)
                    gender = gr.Radio(["male", "female", "other"], label="Gender", value="male")
                
                assessment_date = gr.Textbox(
                    label="Assessment Date", 
                    placeholder="MM/DD/YYYY", 
                    value=datetime.now().strftime('%m/%d/%Y')
                )
                clinician_name = gr.Textbox(label="Clinician", placeholder="Enter clinician name")
                
                # Transcript input
                gr.Markdown("### Transcript")
                sample_btn = gr.Button("Load Sample Transcript")
                file_upload = gr.File(label="Upload transcript file (.txt or .cha)")
                transcript = gr.Textbox(
                    label="Speech transcript (CHAT format preferred)", 
                    placeholder="Enter transcript text or upload a file...",
                    lines=10
                )
                
                # Analysis button
                analyze_btn = gr.Button("Analyze Transcript", variant="primary")
                
            with gr.Column(scale=1):
                # Results display
                gr.Markdown("### Analysis Results")
                
                analysis_output = gr.Markdown(label="Full Analysis")
                
                # PDF export (only shown if ReportLab is available)
                export_status = gr.Markdown("")
                if REPORTLAB_AVAILABLE:
                    export_btn = gr.Button("Export as PDF", variant="secondary")
                else:
                    gr.Markdown("⚠️ PDF export is disabled - ReportLab library is not installed")
        
        # Load sample transcript button
        def load_sample():
            return SAMPLE_TRANSCRIPT
        
        sample_btn.click(load_sample, outputs=[transcript])
        
        # File upload handler
        file_upload.upload(process_upload, file_upload, transcript)
        
        # Analysis button handler
        def on_analyze_click(transcript_text, age_val, gender_val, patient_name_val, record_id_val, clinician_val, assessment_date_val):
            if not transcript_text or len(transcript_text.strip()) < 50:
                return "Error: Please provide a longer transcript for analysis."
            
            try:
                # Get the analysis results
                results = analyze_transcript(transcript_text, age_val, gender_val)
                
                # Return the full report
                return results['full_report']
            
            except Exception as e:
                logger.exception("Error during analysis")
                return f"Error during analysis: {str(e)}"
        
        analyze_btn.click(
            on_analyze_click,
            inputs=[
                transcript, age, gender, 
                patient_name, record_id, clinician_name, assessment_date
            ],
            outputs=[analysis_output]
        )
        
        # PDF export function
        def on_export_pdf(report_text, p_name, p_record_id, p_age, p_gender, p_date, p_clinician):
            # Check if ReportLab is available
            if not REPORTLAB_AVAILABLE:
                return "ERROR: PDF export is not available because the ReportLab library is not installed. Please install it with 'pip install reportlab'."
                
            if not report_text or len(report_text.strip()) < 50:
                return "Error: Please run the analysis first before exporting to PDF."
                
            try:
                # Parse the report text back into sections
                results = {
                    'speech_factors': '',
                    'casl_data': '',
                    'treatment_suggestions': '',
                    'explanation': '',
                    'additional_analysis': '',
                    'diagnostic_impressions': '',
                }
                
                sections = report_text.split('##')
                for section in sections:
                    section = section.strip()
                    if not section:
                        continue
                    
                    title_content = section.split('\n', 1)
                    if len(title_content) < 2:
                        continue
                    
                    title = title_content[0].strip()
                    content = title_content[1].strip()
                    
                    if "Speech Factors Analysis" in title:
                        results['speech_factors'] = content
                    elif "CASL Skills Assessment" in title:
                        results['casl_data'] = content
                    elif "Treatment Recommendations" in title:
                        results['treatment_suggestions'] = content
                    elif "Clinical Explanation" in title:
                        results['explanation'] = content
                    elif "Additional Analysis" in title:
                        results['additional_analysis'] = content
                    elif "Diagnostic Impressions" in title:
                        results['diagnostic_impressions'] = content
                
                pdf_path = export_pdf(
                    results,
                    patient_name=p_name,
                    record_id=p_record_id,
                    age=p_age,
                    gender=p_gender,
                    assessment_date=p_date,
                    clinician=p_clinician
                )
                
                # Check if the export was successful
                if pdf_path.startswith("ERROR:"):
                    return pdf_path
                
                # Make it downloadable in Hugging Face Spaces
                download_link = f'<a href="file={pdf_path}" download="{os.path.basename(pdf_path)}">Download PDF Report</a>'
                return f"Report saved as PDF: {pdf_path}<br>{download_link}"
            except Exception as e:
                logger.exception("Error exporting to PDF")
                return f"Error creating PDF: {str(e)}"
        
        # Only set up the PDF export button if ReportLab is available
        if REPORTLAB_AVAILABLE:
            export_btn.click(
                on_export_pdf,
                inputs=[
                    analysis_output, 
                    patient_name, 
                    record_id, 
                    age, 
                    gender, 
                    assessment_date, 
                    clinician_name
                ],
                outputs=[export_status]
            )
        
    return app

# Create requirements.txt file for HuggingFace Spaces
def create_requirements_file():
    requirements = [
        "gradio>=4.0.0",
        "pandas",
        "numpy",
        "Pillow",
        "reportlab>=3.6.0",  # Required for PDF exports
        "boto3"
    ]
    
    with open("requirements.txt", "w") as f:
        for req in requirements:
            f.write(f"{req}\n")

if __name__ == "__main__":
    # Create requirements.txt for HuggingFace Spaces
    create_requirements_file()
    
    # Check for AWS credentials
    if not AWS_ACCESS_KEY or not AWS_SECRET_KEY:
        print("NOTE: AWS credentials not found. The app will run in demo mode with simulated responses.")
        print("To enable full functionality, set AWS_ACCESS_KEY and AWS_SECRET_KEY environment variables.")
    
    app = create_interface()
    app.launch(show_api=False)  # Disable API tab for security