Spaces:
Running
Running
File size: 93,731 Bytes
d8e9860 d66b701 d8e9860 d66b701 d8e9860 d66b701 d8e9860 d66b701 d8e9860 d66b701 d8e9860 d66b701 d8e9860 d66b701 d8e9860 d66b701 d8e9860 d66b701 d8e9860 d66b701 d8e9860 d66b701 d8e9860 d66b701 d8e9860 d66b701 d8e9860 d66b701 d8e9860 d66b701 d8e9860 d66b701 d8e9860 d66b701 d8e9860 d66b701 d8e9860 d66b701 d8e9860 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 |
import gradio as gr
import boto3
import json
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import re
import logging
import os
import pickle
import csv
from PIL import Image
import io
import PyPDF2
import uuid
from datetime import datetime
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# AWS credentials for Bedrock API
# For HuggingFace Spaces, set these as secrets in the Space settings
AWS_ACCESS_KEY = os.getenv("AWS_ACCESS_KEY", "")
AWS_SECRET_KEY = os.getenv("AWS_SECRET_KEY", "")
AWS_REGION = os.getenv("AWS_REGION", "us-east-1")
# Initialize Bedrock client if credentials are available
bedrock_client = None
if AWS_ACCESS_KEY and AWS_SECRET_KEY:
try:
bedrock_client = boto3.client(
'bedrock-runtime',
aws_access_key_id=AWS_ACCESS_KEY,
aws_secret_access_key=AWS_SECRET_KEY,
region_name=AWS_REGION
)
logger.info("Bedrock client initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize Bedrock client: {str(e)}")
# Sample transcript for the demo
SAMPLE_TRANSCRIPT = """*PAR: today I would &-um like to talk about &-um a fun trip I took last &-um summer with my family.
*PAR: we went to the &-um &-um beach [//] no to the mountains [//] I mean the beach actually.
*PAR: there was lots of &-um &-um swimming and &-um sun.
*PAR: we [/] we stayed for &-um three no [//] four days in a &-um hotel near the water [: ocean] [*].
*PAR: my favorite part was &-um building &-um castles with sand.
*PAR: sometimes I forget [//] forgetted [: forgot] [*] what they call those things we built.
*PAR: my brother he [//] he helped me dig a big hole.
*PAR: we saw [/] saw fishies [: fish] [*] swimming in the water.
*PAR: sometimes I wonder [/] wonder where fishies [: fish] [*] go when it's cold.
*PAR: maybe they have [/] have houses under the water.
*PAR: after swimming we [//] I eat [: ate] [*] &-um ice cream with &-um chocolate things on top.
*PAR: what do you call those &-um &-um sprinkles! that's the word.
*PAR: my mom said to &-um that I could have &-um two scoops next time.
*PAR: I want to go back to the beach [/] beach next year."""
# ===============================
# Database and Storage Functions
# ===============================
# Create data directories if they don't exist
DATA_DIR = "patient_data"
RECORDS_FILE = os.path.join(DATA_DIR, "patient_records.csv")
ANALYSES_DIR = os.path.join(DATA_DIR, "analyses")
def ensure_data_dirs():
"""Ensure data directories exist"""
os.makedirs(DATA_DIR, exist_ok=True)
os.makedirs(ANALYSES_DIR, exist_ok=True)
# Create records file if it doesn't exist
if not os.path.exists(RECORDS_FILE):
with open(RECORDS_FILE, 'w', newline='') as f:
writer = csv.writer(f)
writer.writerow([
"ID", "Name", "Record ID", "Age", "Gender",
"Assessment Date", "Clinician", "Analysis Date", "File Path"
])
# Initialize data directories
ensure_data_dirs()
def save_patient_record(patient_info, analysis_results, transcript):
"""Save patient record to storage"""
try:
# Generate unique ID for the record
record_id = str(uuid.uuid4())
# Extract patient information
name = patient_info.get("name", "")
patient_id = patient_info.get("record_id", "")
age = patient_info.get("age", "")
gender = patient_info.get("gender", "")
assessment_date = patient_info.get("assessment_date", "")
clinician = patient_info.get("clinician", "")
# Create filename for the analysis data
filename = f"analysis_{record_id}.pkl"
filepath = os.path.join(ANALYSES_DIR, filename)
# Save analysis data
with open(filepath, 'wb') as f:
pickle.dump({
"patient_info": patient_info,
"analysis_results": analysis_results,
"transcript": transcript,
"timestamp": datetime.now().isoformat(),
}, f)
# Add record to CSV file
with open(RECORDS_FILE, 'a', newline='') as f:
writer = csv.writer(f)
writer.writerow([
record_id, name, patient_id, age, gender,
assessment_date, clinician, datetime.now().strftime('%Y-%m-%d'),
filepath
])
return record_id
except Exception as e:
logger.error(f"Error saving patient record: {str(e)}")
return None
def load_patient_record(record_id):
"""Load patient record from storage"""
try:
# Find the record in the CSV file
with open(RECORDS_FILE, 'r', newline='') as f:
reader = csv.reader(f)
next(reader) # Skip header
for row in reader:
if row[0] == record_id:
file_path = row[8]
# Load and return the data
with open(file_path, 'rb') as f:
return pickle.load(f)
return None
except Exception as e:
logger.error(f"Error loading patient record: {str(e)}")
return None
def get_all_patient_records():
"""Return a list of all patient records"""
try:
records = []
if os.path.exists(RECORDS_FILE):
with open(RECORDS_FILE, 'r', newline='') as f:
reader = csv.reader(f)
next(reader) # Skip header
for row in reader:
records.append({
"id": row[0],
"name": row[1],
"record_id": row[2],
"age": row[3],
"gender": row[4],
"assessment_date": row[5],
"clinician": row[6],
"analysis_date": row[7]
})
return records
except Exception as e:
logger.error(f"Error getting patient records: {str(e)}")
return []
# ===============================
# Utility Functions
# ===============================
def read_pdf(file_path):
"""Read text from a PDF file"""
try:
with open(file_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
return text
except Exception as e:
logger.error(f"Error reading PDF: {str(e)}")
return ""
def read_cha_file(file_path):
"""Read and parse a .cha transcript file"""
try:
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read()
# Extract participant lines (starting with *PAR:)
par_lines = []
for line in content.splitlines():
if line.startswith('*PAR:'):
par_lines.append(line)
# If no PAR lines found, just return the whole content
if not par_lines:
return content
return '\n'.join(par_lines)
except Exception as e:
logger.error(f"Error reading CHA file: {str(e)}")
return ""
def process_upload(file):
"""Process an uploaded file (PDF, text, or CHA)"""
if file is None:
return ""
file_path = file.name
if file_path.endswith('.pdf'):
return read_pdf(file_path)
elif file_path.endswith('.cha'):
return read_cha_file(file_path)
else:
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
return f.read()
# ===============================
# AI Model Interface Functions
# ===============================
def call_bedrock(prompt, max_tokens=4096):
"""Call the AWS Bedrock API to analyze text using Claude"""
if not bedrock_client:
return "AWS credentials not configured. Please set your AWS credentials as secrets in the Space settings."
try:
body = json.dumps({
"anthropic_version": "bedrock-2023-05-31",
"max_tokens": max_tokens,
"messages": [
{
"role": "user",
"content": prompt
}
],
"temperature": 0.3,
"top_p": 0.9
})
modelId = 'anthropic.claude-3-sonnet-20240229-v1:0'
response = bedrock_client.invoke_model(
body=body,
modelId=modelId,
accept='application/json',
contentType='application/json'
)
response_body = json.loads(response.get('body').read())
return response_body['content'][0]['text']
except Exception as e:
logger.error(f"Error in call_bedrock: {str(e)}")
return f"Error: {str(e)}"
def generate_demo_response(prompt):
"""Generate a simulated response for demo purposes"""
# This function generates a realistic but fake response for demo purposes
# In a real deployment, you would call an actual LLM API
random_seed = sum(ord(c) for c in prompt) % 1000 # Generate a seed based on prompt
np.random.seed(random_seed)
# Simulate speech factors with random but reasonable values
factors = [
"Difficulty producing fluent speech",
"Word retrieval issues",
"Grammatical errors",
"Repetitions and revisions",
"Neologisms",
"Perseveration",
"Comprehension issues"
]
occurrences = np.random.randint(1, 15, size=len(factors))
percentiles = np.random.randint(30, 95, size=len(factors))
# Simulate CASL scores
domains = ["Lexical/Semantic", "Syntactic", "Supralinguistic"]
scores = np.random.randint(80, 115, size=3)
percentiles_casl = [int(np.interp(s, [70, 85, 100, 115, 130], [2, 16, 50, 84, 98])) for s in scores]
perf_levels = []
for s in scores:
if s < 70: perf_levels.append("Well Below Average")
elif s < 85: perf_levels.append("Below Average")
elif s < 115: perf_levels.append("Average")
elif s < 130: perf_levels.append("Above Average")
else: perf_levels.append("Well Above Average")
# Build response
response = "## Speech Factor Analysis\n\n"
for i, factor in enumerate(factors):
response += f"{factor}: {occurrences[i]}, {percentiles[i]}\n"
response += "\n## CASL-2 Assessment\n\n"
for i, domain in enumerate(domains):
response += f"{domain} Skills: Standard Score ({scores[i]}), Percentile Rank ({percentiles_casl[i]}%), Performance Level ({perf_levels[i]})\n"
response += "\n## Other analysis/Best plans of action:\n\n"
suggestions = [
"Implement word-finding strategies with semantic cuing",
"Practice structured narrative tasks with visual supports",
"Use sentence formulation exercises with increasing complexity",
"Incorporate self-monitoring techniques during structured conversations",
"Work on grammatical forms through structured practice"
]
for suggestion in suggestions:
response += f"- {suggestion}\n"
response += "\n## Explanation:\n\n"
response += "Based on the analysis, this patient demonstrates moderate word-finding difficulties with compensatory strategies like filler words and repetitions. Their syntactic skills show some weakness in verb tense consistency. Treatment should focus on building vocabulary access, grammatical accuracy, and narrative structure using scaffolded support.\n"
response += "\n## Additional Analysis:\n\n"
response += "The patient shows relative strengths in conversation maintenance and topic coherence. Consider building on these strengths while addressing specific language formulation challenges. Recommended frequency: 2-3 sessions per week for 10-12 weeks with periodic reassessment."
return response
def generate_demo_transcription(audio_path):
"""Generate a simulated transcription response"""
# In a real app, this would process an audio file
return "*PAR: today I want to tell you about my favorite toy.\n*PAR: it's a &-um teddy bear that I got for my birthday.\n*PAR: he has &-um brown fur and a red bow.\n*PAR: I like to sleep with him every night.\n*PAR: sometimes I take him to school in my backpack."
def generate_demo_qa_response(question):
"""Generate a simulated Q&A response"""
qa_responses = {
"what is casl": "CASL-2 (Comprehensive Assessment of Spoken Language, Second Edition) is a standardized assessment tool used by Speech-Language Pathologists to evaluate a child's oral language abilities across multiple domains including lexical/semantic, syntactic, and supralinguistic skills. It helps identify language disorders and guides intervention planning.",
"how do i interpret scores": "CASL-2 scores include standard scores (mean=100, SD=15), percentile ranks, and performance levels. Standard scores below 85 indicate below average performance, 85-115 is average, and above 115 is above average. Percentile ranks show how a child performs relative to same-age peers.",
"what activities help word finding": "Activities to improve word-finding skills include semantic feature analysis (describing attributes of objects), categorization tasks, word association games, rapid naming practice, and structured conversation with gentle cueing. Visual supports and semantic mapping can also be helpful.",
"how often should therapy occur": "The recommended frequency for speech-language therapy typically ranges from 1-3 sessions per week, depending on the severity of the impairment. For moderate difficulties, twice weekly sessions of 30-45 minutes are common. Consistency is important for progress.",
"when should i reassess": "Reassessment is typically recommended every 3-6 months to track progress and adjust treatment goals. For educational settings, annual reassessment is common. More frequent informal assessments can help guide ongoing intervention.",
}
# Simple keyword matching for demo purposes
for key, response in qa_responses.items():
if key in question.lower():
return response
return "I don't have specific information about that topic. For detailed professional guidance, consult with a licensed Speech-Language Pathologist who can provide advice specific to your situation."
# ===============================
# Analysis Functions
# ===============================
def parse_casl_response(response):
"""Parse the LLM response for CASL analysis into structured data"""
lines = response.split('\n')
data = {
'Factor': [],
'Occurrences': [],
'Severity': [],
'Examples': [] # Added field for error examples
}
casl_data = {
'Domain': ['Lexical/Semantic', 'Syntactic', 'Supralinguistic'],
'Standard Score': [0, 0, 0],
'Percentile': [0, 0, 0],
'Performance Level': ['', '', ''],
'Examples': ['', '', ''] # Added field for specific examples
}
treatment_suggestions = []
explanation = ""
additional_analysis = ""
specific_errors = {} # Track specific error examples by factor
raw_response = response # Store the complete raw LLM response
# Pattern to match factor lines - updated to potentially capture examples
factor_pattern = re.compile(r'([\w\s/]+):\s*(\d+)[,\s]+(\d+)(?:\s*-\s*(.+))?')
# Pattern to match CASL data
casl_pattern = re.compile(r'(\w+/?\w*)\s+Skills:\s+Standard\s+Score\s+\((\d+)\),\s+Percentile\s+Rank\s+\((\d+)%\),\s+Performance\s+Level\s+\(([\w\s]+)\)')
# Pattern to find examples
example_pattern = re.compile(r'(?:Example|Examples|observed|observed in)[^\"\'"]*[\"\']([^\"\']*)[\"\']')
error_pattern = re.compile(r'(?:error|errors|difficulty|difficulties)[^\"\'"]*[\"\']([^\"\']*)[\"\']')
current_factor = None
current_domain = None
in_suggestions = False
in_explanation = False
in_additional = False
in_examples = False
for i, line in enumerate(lines):
line = line.strip()
# Skip empty lines
if not line:
continue
# Check for factor data
factor_match = factor_pattern.search(line)
if factor_match:
factor = factor_match.group(1).strip()
occurrences = int(factor_match.group(2))
severity = int(factor_match.group(3))
example = factor_match.group(4) if factor_match.group(4) else ""
# Look ahead to find examples for this factor
if not example:
# Check next few lines for examples
for j in range(i+1, min(i+5, len(lines))):
next_line = lines[j].strip()
if next_line and ('"' in next_line or "'" in next_line):
example_match = example_pattern.search(next_line)
if example_match:
example = example_match.group(1)
break
error_match = error_pattern.search(next_line)
if error_match:
example = error_match.group(1)
break
data['Factor'].append(factor)
data['Occurrences'].append(occurrences)
data['Severity'].append(severity)
data['Examples'].append(example)
specific_errors[factor] = example
current_factor = factor
continue
# Check for CASL data
casl_match = casl_pattern.search(line)
if casl_match:
domain = casl_match.group(1)
score = int(casl_match.group(2))
percentile = int(casl_match.group(3))
level = casl_match.group(4)
domain_examples = ""
# Look ahead for examples related to this domain
for j in range(i+1, min(i+10, len(lines))):
next_line = lines[j].strip()
if "Domain:" in next_line or casl_pattern.search(next_line):
break
if ('"' in next_line or "'" in next_line) and "example" in next_line.lower():
example_match = re.search(r'[\"\']([^\"\']*)[\"\']', next_line)
if example_match:
domain_examples = example_match.group(1)
break
if "Lexical" in domain:
casl_data['Standard Score'][0] = score
casl_data['Percentile'][0] = percentile
casl_data['Performance Level'][0] = level
casl_data['Examples'][0] = domain_examples
current_domain = "Lexical/Semantic"
elif "Syntactic" in domain:
casl_data['Standard Score'][1] = score
casl_data['Percentile'][1] = percentile
casl_data['Performance Level'][1] = level
casl_data['Examples'][1] = domain_examples
current_domain = "Syntactic"
elif "Supralinguistic" in domain:
casl_data['Standard Score'][2] = score
casl_data['Percentile'][2] = percentile
casl_data['Performance Level'][2] = level
casl_data['Examples'][2] = domain_examples
current_domain = "Supralinguistic"
continue
# Check for section headers
if "Other analysis/Best plans of action:" in line or "### Recommended Treatment Approaches" in line or "Treatment Recommendations:" in line:
in_suggestions = True
in_explanation = False
in_additional = False
in_examples = False
continue
elif "Explanation:" in line or "### Clinical Rationale" in line or "Clinical Rationale:" in line:
in_suggestions = False
in_explanation = True
in_additional = False
in_examples = False
continue
elif "Additional Analysis:" in line or "Further Observations:" in line:
in_suggestions = False
in_explanation = False
in_additional = True
in_examples = False
continue
elif "Examples:" in line or "Specific Errors:" in line:
in_suggestions = False
in_explanation = False
in_additional = False
in_examples = True
continue
# Add content to appropriate section
if in_suggestions:
if line.startswith("- "):
treatment_suggestions.append(line[2:]) # Remove the bullet point
elif line.startswith("•"):
treatment_suggestions.append(line[1:].strip()) # Remove bullet and trim
elif line and not line.startswith("#"):
# Non-empty, non-header lines might be treatment suggestions without bullets
treatment_suggestions.append(line)
elif in_explanation:
explanation += line + "\n"
elif in_additional:
additional_analysis += line + "\n"
elif in_examples and current_factor and not specific_errors.get(current_factor):
# Look for quoted examples in the examples section
if '"' in line or "'" in line:
example_match = re.search(r'[\"\']([^\"\']*)[\"\']', line)
if example_match:
specific_errors[current_factor] = example_match.group(1)
# Update the examples in the dataframe
if current_factor in data['Factor']:
idx = data['Factor'].index(current_factor)
data['Examples'][idx] = example_match.group(1)
# Continuously look for examples with quotes regardless of section
if ('"' in line or "'" in line) and current_factor:
if re.search(rf'{current_factor}.*[\"\']([^\"\']*)[\"\']', line, re.IGNORECASE):
example_match = re.search(r'[\"\']([^\"\']*)[\"\']', line)
if example_match:
specific_errors[current_factor] = example_match.group(1)
# Update in dataframe
if current_factor in data['Factor']:
idx = data['Factor'].index(current_factor)
data['Examples'][idx] = example_match.group(1)
# Process specific errors and examples if they're presented as a list later in the text
for i, line in enumerate(lines):
if "examples of errors" in line.lower() or "error examples" in line.lower():
# Look through next few lines for examples
for j in range(i+1, min(i+15, len(lines))):
example_line = lines[j].strip()
if not example_line or example_line.startswith("#"):
continue
# Look for factors mentioned with examples
for factor in data['Factor']:
if factor.lower() in example_line.lower() and ('"' in example_line or "'" in example_line):
example_match = re.search(r'[\"\']([^\"\']*)[\"\']', example_line)
if example_match:
idx = data['Factor'].index(factor)
data['Examples'][idx] = example_match.group(1)
specific_errors[factor] = example_match.group(1)
return {
'speech_factors': pd.DataFrame(data),
'casl_data': pd.DataFrame(casl_data),
'treatment_suggestions': treatment_suggestions,
'explanation': explanation,
'additional_analysis': additional_analysis,
'specific_errors': specific_errors,
'raw_response': raw_response # Include the full LLM response
}
def create_casl_plots(speech_factors, casl_data):
"""Create visualizations for the CASL analysis results"""
# Set a professional style for the plots
plt.style.use('seaborn-v0_8-pastel')
# Create figure with two subplots
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6), dpi=100)
# Plot speech factors - sorted by occurrence count
if not speech_factors.empty:
# Sort the dataframe
speech_factors_sorted = speech_factors.sort_values('Occurrences', ascending=False)
# Custom colors
speech_colors = ['#4C72B0', '#55A868', '#C44E52', '#8172B3', '#CCB974', '#64B5CD', '#4C72B0']
# Create horizontal bar chart
bars = ax1.barh(speech_factors_sorted['Factor'],
speech_factors_sorted['Occurrences'],
color=speech_colors[:len(speech_factors_sorted)])
# Add count labels at the end of each bar
for i, bar in enumerate(bars):
width = bar.get_width()
factor = speech_factors_sorted.iloc[i]['Factor']
# Get severity percentile for this factor
severity = speech_factors_sorted.iloc[i]['Severity']
# Label with both count and severity percentile
ax1.text(width + 0.3, bar.get_y() + bar.get_height()/2,
f'{width:.0f} ({severity}%)', ha='left', va='center')
# Add example as annotation if available
if 'Examples' in speech_factors_sorted.columns:
example = speech_factors_sorted.iloc[i]['Examples']
if example and len(example) > 0:
# Add a small marker to indicate example exists
ax1.text(0.5, bar.get_y() + bar.get_height()/2,
'★', ha='center', va='center', color='#C44E52',
fontsize=8, fontweight='bold')
ax1.set_title('Speech Factors Analysis', fontsize=14, fontweight='bold')
ax1.set_xlabel('Number of Occurrences', fontsize=11)
# No y-label needed for horizontal bar chart
# Remove top and right spines
ax1.spines['top'].set_visible(False)
ax1.spines['right'].set_visible(False)
# Add a footnote about the star symbol
ax1.annotate('★ = Example available in details panel', xy=(0, -0.1), xycoords='axes fraction',
fontsize=8, ha='left', va='center', color='#C44E52')
# Plot CASL domains
domain_names = casl_data['Domain']
y_scores = casl_data['Standard Score']
percentiles = casl_data['Percentile']
# Custom color scheme
casl_colors = ['#4C72B0', '#55A868', '#C44E52']
# Create bars with nice colors
bars = ax2.bar(domain_names, y_scores, color=casl_colors)
# Add score labels on top of each bar
for i, bar in enumerate(bars):
height = bar.get_height()
score = y_scores.iloc[i]
percentile = percentiles.iloc[i]
# Label with both score and percentile
ax2.text(bar.get_x() + bar.get_width()/2., height + 1,
f'{score:.0f} ({percentile}%)', ha='center', va='bottom')
# Add a star marker if example exists
if 'Examples' in casl_data.columns:
example = casl_data.iloc[i]['Examples']
if example and len(example) > 0:
ax2.text(bar.get_x() + bar.get_width()/2., height/2,
'★', ha='center', va='center', color='white',
fontsize=12, fontweight='bold')
# Add score reference lines
ax2.axhline(y=100, linestyle='--', color='gray', alpha=0.7, label='Average (100)')
ax2.axhline(y=85, linestyle=':', color='orange', alpha=0.7, label='Below Average (<85)')
ax2.axhline(y=115, linestyle=':', color='green', alpha=0.7, label='Above Average (>115)')
# Add labels and title
ax2.set_title('CASL-2 Standard Scores', fontsize=14, fontweight='bold')
ax2.set_ylabel('Standard Score', fontsize=11)
ax2.set_ylim(bottom=0, top=max(130, max(y_scores) + 15)) # Set y-axis limit with some padding
# Add legend
ax2.legend(loc='upper right', fontsize='small')
# Remove top and right spines
ax2.spines['top'].set_visible(False)
ax2.spines['right'].set_visible(False)
# Add overall figure title
fig.suptitle('Speech Analysis Results', fontsize=16, fontweight='bold', y=0.98)
# Add a subtitle with note about examples
plt.figtext(0.5, 0.01, '★ indicates specific examples available in the Error Examples panel',
ha='center', fontsize=9, fontstyle='italic')
plt.tight_layout(rect=[0, 0.03, 1, 0.95]) # Adjust layout to make room for suptitle
# Save plot to buffer
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight')
buf.seek(0)
plt.close()
return buf
def create_casl_radar_chart(speech_factors):
"""Create a radar chart for speech factors (percentiles)"""
if speech_factors.empty or 'Severity' not in speech_factors.columns:
# Create a placeholder image if no data
plt.figure(figsize=(8, 8))
plt.text(0.5, 0.5, "No data available for radar chart",
ha='center', va='center', fontsize=14)
plt.axis('off')
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
plt.close()
return buf
# Prepare data for radar chart
categories = speech_factors['Factor'].tolist()
percentiles = speech_factors['Severity'].tolist()
# Need to repeat first value to close the polygon
categories = categories + [categories[0]]
percentiles = percentiles + [percentiles[0]]
# Convert to radians and calculate points
N = len(categories) - 1 # Subtract 1 for the repeated point
angles = [n / float(N) * 2 * np.pi for n in range(N)]
angles += angles[:1] # Repeat the first angle to close the polygon
# Create the plot
fig = plt.figure(figsize=(8, 8))
ax = fig.add_subplot(111, polar=True)
# Draw percentile lines with labels
plt.xticks(angles[:-1], categories[:-1], size=12)
ax.set_rlabel_position(0)
plt.yticks([20, 40, 60, 80, 100], ["20", "40", "60", "80", "100"], color="grey", size=10)
plt.ylim(0, 100)
# Plot data
ax.plot(angles, percentiles, linewidth=1, linestyle='solid', color='#4C72B0')
ax.fill(angles, percentiles, color='#4C72B0', alpha=0.25)
# Add title
plt.title('Speech Factors Severity (Percentile)', size=15, fontweight='bold', pad=20)
# Save to buffer
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight')
buf.seek(0)
plt.close()
return buf
def analyze_transcript(transcript, age, gender):
"""Analyze a speech transcript using the CASL framework"""
# CHAT transcription symbol cheat sheet
cheat_sheet = """
CHAT TRANSCRIPTION SYMBOL SUMMARY -- Abridged for AphasiaBank
Basic Utterance Terminators
. period
? question
! exclamation
Special Utterance Terminators
+… trailing off
+..? trailing off of a question
+/. interruption by another speaker
+/? interruption of a question by another speaker
+//. self-interruption
+//? self-interruption of a question
+"/. quotation follows on next line
+" quoted utterance occurs on this line (use at beginning of utterance
as link, not a terminator)
+< lazy overlap marking (at beginning of utterance that overlapped the
the previous utterance)
@n neologism (e.g., sakov@n)
exclamations common ones: ah, aw, haha, ow, oy, sh, ugh, uhoh
interjections common ones: mhm, uhhuh, hm, uhuh
fillers common ones: &-um, &-uh
letters s@l
letter sequence abcdefg@k
xxx unintelligible speech, not treated as a word
www untranscribed material (e.g., looking through pictures, talking with
spouse), must be followed by %exp tier (see below)
&+sounds phonological fragment (&+sh &+w we came home)
Scoped Symbols
[: text] target/intended word for errors (e.g., tried [: cried])
[*] error (e.g., paraphasia -- wɛk@u [: wet] [*])
[/] retracing without correction (e.g., simple repetition)
put repeated items between <> unless only one word was repeated
[//] retracing with correction (e.g., simple word or grammar change)
put changed items between <> unless only one word was changed
"""
# Instructions for the LLM analysis
instructions = """
You are a speech pathologist analyzing this transcription sample. Provide a detailed analysis focused on specific quotes from the transcript.
The factors of speech that you need to count are:
1. Difficulty producing fluent, grammatical speech - speech that is slow, halting, with pauses while searching for words
2. Word retrieval issues - trouble thinking of specific words, use of filler words like um, circumlocution, semantically similar word substitutions
3. Grammatical errors - missing/incorrect function words, problems with verb tenses, conjugation, agreement, simplified sentences
4. Repetitions and revisions - repeating or restating words, phrases or sentences due to trouble finding the right words
5. Neologisms - creating nonexistent "new" words
6. Perseveration - unintentionally repeating words or phrases over and over
7. Comprehension issues - trouble understanding complex sentences, fast speech, relying more on context and cues
For each factor, provide:
- Number of occurrences
- Severity percentile (estimate based on your clinical judgment)
- At least 2-3 specific quotes from the transcript as examples
Then evaluate using the CASL-2 Speech and Language Analysis Framework across these domains:
1. Lexical/Semantic Skills:
- Assess vocabulary diversity, word-finding abilities, semantic precision
- Provide Standard Score (mean=100, SD=15), percentile rank, and performance level
- Include SPECIFIC QUOTES as evidence
2. Syntactic Skills:
- Evaluate grammatical accuracy, sentence complexity, morphological skills
- Provide Standard Score, percentile rank, and performance level
- Include SPECIFIC QUOTES as evidence
3. Supralinguistic Skills:
- Assess figurative language use, inferencing, and abstract reasoning
- Provide Standard Score, percentile rank, and performance level
- Include SPECIFIC QUOTES as evidence
YOUR RESPONSE MUST USE THESE EXACT SECTION MARKERS FOR PARSING:
<SPEECH_FACTORS_START>
Difficulty producing fluent, grammatical speech: (occurrences), (percentile)
Examples:
- "(direct quote from transcript)"
- "(direct quote from transcript)"
Word retrieval issues: (occurrences), (percentile)
Examples:
- "(direct quote from transcript)"
- "(direct quote from transcript)"
(And so on for each factor)
<SPEECH_FACTORS_END>
<CASL_SKILLS_START>
Lexical/Semantic Skills: Standard Score (X), Percentile Rank (X%), Performance Level
Examples:
- "(direct quote showing strength or weakness)"
- "(direct quote showing strength or weakness)"
Syntactic Skills: Standard Score (X), Percentile Rank (X%), Performance Level
Examples:
- "(direct quote showing strength or weakness)"
- "(direct quote showing strength or weakness)"
Supralinguistic Skills: Standard Score (X), Percentile Rank (X%), Performance Level
Examples:
- "(direct quote showing strength or weakness)"
- "(direct quote showing strength or weakness)"
<CASL_SKILLS_END>
<TREATMENT_RECOMMENDATIONS_START>
- (treatment recommendation)
- (treatment recommendation)
- (treatment recommendation)
<TREATMENT_RECOMMENDATIONS_END>
<EXPLANATION_START>
(brief diagnostic rationale based on findings)
<EXPLANATION_END>
<ADDITIONAL_ANALYSIS_START>
(specific insights that would be helpful for treatment planning)
<ADDITIONAL_ANALYSIS_END>
<DIAGNOSTIC_IMPRESSIONS_START>
(summarize findings across domains using specific examples and clear explanations)
<DIAGNOSTIC_IMPRESSIONS_END>
<ERROR_EXAMPLES_START>
(Copy all the specific quote examples here again, organized by error type or skill domain)
<ERROR_EXAMPLES_END>
MOST IMPORTANT:
1. Use EXACTLY the section markers provided (like <SPEECH_FACTORS_START>) to make parsing reliable
2. For EVERY factor and domain you analyze, you MUST provide direct quotes from the transcript as evidence
3. Be very specific and cite the exact text
4. Do not omit any of the required sections
"""
# Prepare prompt for Claude with the user's role context
role_context = """
You are a speech pathologist, a healthcare professional who specializes in evaluating, diagnosing, and treating communication disorders, including speech, language, cognitive-communication, voice, swallowing, and fluency disorders. Your role is to help patients improve their speech and communication skills through various therapeutic techniques and exercises.
You are working with a student with speech impediments.
The most important thing is that you stay kind to the child. Be constructive and helpful rather than critical.
"""
prompt = f"""
{role_context}
You are analyzing a transcript for a patient who is {age} years old and {gender}.
TRANSCRIPT:
{transcript}
{cheat_sheet}
{instructions}
Remember to be precise but compassionate in your analysis. Use direct quotes from the transcript for every factor and domain you analyze.
"""
# Call the appropriate API or fallback to demo mode
if bedrock_client:
response = call_bedrock(prompt)
else:
response = generate_demo_response(prompt)
# Parse the response
results = parse_casl_response(response)
# Create visualizations
plot_image = create_casl_plots(results['speech_factors'], results['casl_data'])
radar_image = create_casl_radar_chart(results['speech_factors'])
return results, plot_image, radar_image, response
def generate_report(patient_info, analysis_results, report_type="formal"):
"""Generate a professional report based on analysis results"""
patient_name = patient_info.get("name", "")
record_id = patient_info.get("record_id", "")
age = patient_info.get("age", "")
gender = patient_info.get("gender", "")
assessment_date = patient_info.get("assessment_date", datetime.now().strftime('%m/%d/%Y'))
clinician = patient_info.get("clinician", "")
prompt = f"""
You are a professional Speech-Language Pathologist creating a {report_type} report based on an assessment.
PATIENT INFORMATION:
Name: {patient_name}
Record ID: {record_id}
Age: {age}
Gender: {gender}
Assessment Date: {assessment_date}
Clinician: {clinician}
ASSESSMENT RESULTS:
{analysis_results}
Please create a professional {report_type} report that includes:
1. Patient information and assessment details
2. Summary of findings (strengths and areas of concern)
3. Detailed analysis of language domains
4. Specific recommendations for therapy
5. Recommendation for frequency and duration of services
Use clear, professional language appropriate for {'educational professionals' if report_type == 'formal' else 'parents and caregivers'}.
Format the report with proper headings and sections.
"""
# Call the API or use demo mode
if bedrock_client:
report = call_bedrock(prompt, max_tokens=6000)
else:
# For demo, create a simulated report
if report_type == 'formal':
report = f"""
# FORMAL LANGUAGE ASSESSMENT REPORT
**Date of Assessment:** {assessment_date}
**Clinician:** {clinician}
## PATIENT INFORMATION
**Name:** {patient_name}
**Record ID:** {record_id}
**Age:** {age}
**Gender:** {gender}
## ASSESSMENT SUMMARY
The patient was assessed using the Comprehensive Assessment of Spoken Language, Second Edition (CASL-2) to evaluate language skills across multiple domains. The assessment involved language sample analysis and standardized testing.
## KEY FINDINGS
**Areas of Strength:**
- Ability to maintain conversational topics
- Good vocabulary for everyday topics
- Strong nonverbal communication skills
**Areas of Challenge:**
- Word-finding difficulties during conversation
- Grammatical errors in complex sentences
- Difficulty with abstract language concepts
## DETAILED ANALYSIS
**Lexical/Semantic Skills:** Standard Score 91 (27th percentile) - Low Average Range
The student demonstrates adequate vocabulary but struggles with retrieving specific words during conversation. Word-finding pauses were noted throughout the language sample.
**Syntactic Skills:** Standard Score 85 (16th percentile) - Low Average Range
The student shows difficulty with complex grammatical structures, particularly verb tense consistency and complex sentence formation.
**Supralinguistic Skills:** Standard Score 83 (13th percentile) - Below Average Range
The student struggles with understanding figurative language, making inferences, and comprehending abstract concepts.
## RECOMMENDATIONS
1. Speech-Language Therapy focused on:
- Word-finding strategies using semantic feature analysis
- Structured grammatical exercises to improve sentence complexity
- Explicit instruction in figurative language comprehension
- Narrative language development using visual supports
2. Frequency of service: Twice weekly sessions of 30 minutes each for 12 weeks, followed by a reassessment to measure progress.
3. Classroom accommodations including:
- Extended time for verbal responses
- Visual supports for complex instructions
- Pre-teaching of vocabulary for academic units
## PROGNOSIS
The prognosis for improvement is good with consistent therapeutic intervention and support. Regular reassessment is recommended to monitor progress.
Respectfully submitted,
{clinician}
Speech-Language Pathologist
"""
else:
report = f"""
# PARENT-FRIENDLY LANGUAGE ASSESSMENT SUMMARY
**Date of Assessment:** {assessment_date}
**Clinician:** {clinician}
## PATIENT INFORMATION
**Name:** {patient_name}
**Record ID:** {record_id}
**Age:** {age}
**Gender:** {gender}
## ASSESSMENT SUMMARY
We completed a language assessment to better understand your child's communication strengths and challenges. This helps us create a plan to support their development.
## KEY FINDINGS
**Areas of Strength:**
- Ability to maintain conversational topics
- Good vocabulary for everyday topics
- Strong nonverbal communication skills
**Areas of Challenge:**
- Word-finding difficulties during conversation
- Grammatical errors in complex sentences
- Difficulty with abstract language concepts
## DETAILED ANALYSIS
**Lexical/Semantic Skills:** Standard Score 91 (27th percentile) - Low Average Range
The student demonstrates adequate vocabulary but struggles with retrieving specific words during conversation. Word-finding pauses were noted throughout the language sample.
**Syntactic Skills:** Standard Score 85 (16th percentile) - Low Average Range
The student shows difficulty with complex grammatical structures, particularly verb tense consistency and complex sentence formation.
**Supralinguistic Skills:** Standard Score 83 (13th percentile) - Below Average Range
The student struggles with understanding figurative language, making inferences, and comprehending abstract concepts.
## RECOMMENDATIONS
We recommend:
- Word-finding strategies using semantic feature analysis
- Structured grammatical exercises to improve sentence complexity
- Explicit instruction in figurative language comprehension
- Narrative language development using visual supports
2. We recommend therapy twice a week for 30 minutes. This consistency will help your child make better progress.
3. In school, your child may benefit from:
- Extended time for verbal responses
- Visual supports for complex instructions
- Pre-teaching of vocabulary for academic units
## PROGNOSIS
With regular therapy and support at home, we expect your child to make good progress in these areas.
Please reach out with any questions!
{clinician}
Speech-Language Pathologist
"""
return report
def transcribe_audio(audio_path, patient_age):
"""Transcribe an audio recording using CHAT format"""
# In a real implementation, this would use a speech-to-text service
# For demo purposes, we'll return a simulated transcription
if bedrock_client:
# In a real implementation, you would process the audio file and send it to a transcription service
# Here we just simulate the result
transcription = generate_demo_transcription(audio_path)
else:
transcription = generate_demo_transcription(audio_path)
return transcription
def answer_slp_question(question):
"""Answer a question about SLP practice or CASL assessment"""
prompt = f"""
You are an experienced Speech-Language Pathologist answering a question from a colleague.
QUESTION:
{question}
Please provide a clear, evidence-based answer focused specifically on the question asked.
Reference best practices and current research where appropriate.
Keep your answer concise but comprehensive.
"""
if bedrock_client:
answer = call_bedrock(prompt)
else:
answer = generate_demo_qa_response(question)
return answer
# ===============================
# Gradio Interface
# ===============================
def create_interface():
"""Create the main Gradio interface"""
# Use a simple theme with default colors
custom_theme = gr.themes.Soft(
font=[gr.themes.GoogleFont("Inter"), "system-ui", "sans-serif"]
)
with gr.Blocks(theme=custom_theme, css="""
.header {
text-align: center;
margin-bottom: 20px;
}
.header img {
max-height: 100px;
margin-bottom: 10px;
}
.container {
border-radius: 10px;
padding: 10px;
margin-bottom: 20px;
}
.patient-info {
background-color: #e3f2fd;
}
.speech-sample {
background-color: #f0f8ff;
}
.results-container {
background-color: #f9f9f9;
}
.viz-container {
display: flex;
justify-content: center;
margin-bottom: 20px;
}
.footer {
text-align: center;
margin-top: 30px;
padding: 10px;
font-size: 0.8em;
color: #78909C;
}
.info-box {
background-color: #e8f5e9;
border-left: 4px solid #4CAF50;
padding: 10px 15px;
margin-bottom: 15px;
border-radius: 4px;
}
.warning-box {
background-color: #fff8e1;
border-left: 4px solid #FFC107;
padding: 10px 15px;
border-radius: 4px;
}
.markdown-text h3 {
color: #2C7FB8;
border-bottom: 1px solid #eaeaea;
padding-bottom: 5px;
}
.evidence-table {
border-collapse: collapse;
width: 100%;
}
.evidence-table th, .evidence-table td {
border: 1px solid #ddd;
padding: 8px;
text-align: left;
}
.evidence-table th {
background-color: #f5f7fa;
color: #333;
}
.evidence-table tr:nth-child(even) {
background-color: #f9f9f9;
}
.tab-content {
padding: 15px;
background-color: white;
border-radius: 0 0 8px 8px;
box-shadow: 0 2px 5px rgba(0,0,0,0.05);
}
""") as app:
# Create header with logo
gr.HTML(
"""
<div class="header">
<h1>SLP Analysis Tool</h1>
<p>A comprehensive assessment tool for Speech-Language Pathologists</p>
</div>
"""
)
# Main tabs
with gr.Tabs() as main_tabs:
# ===============================
# CASL Analysis Tab
# ===============================
with gr.TabItem("CASL Analysis", id=0):
with gr.Row():
# Left column - Input section
with gr.Column(scale=1):
# Patient information panel
with gr.Group(elem_classes="container patient-info"):
gr.Markdown("### Patient Information")
with gr.Row():
patient_name = gr.Textbox(label="Patient Name", placeholder="Enter patient name")
record_id = gr.Textbox(label="Record ID", placeholder="Enter record ID")
with gr.Row():
age = gr.Number(label="Age", value=8, minimum=1, maximum=120)
gender = gr.Radio(["male", "female", "other"], label="Gender", value="male")
with gr.Row():
assessment_date = gr.Textbox(
label="Assessment Date",
placeholder="MM/DD/YYYY",
value=datetime.now().strftime('%m/%d/%Y')
)
clinician_name = gr.Textbox(
label="Clinician",
placeholder="Enter clinician name"
)
# Speech sample panel
with gr.Group(elem_classes="container speech-sample"):
gr.Markdown("### Speech Sample")
# Sample button
sample_btn = gr.Button("Load Sample Transcript", size="sm")
# Transcript input
transcript = gr.Textbox(
label="Transcript",
placeholder="Paste the speech transcript here...",
lines=10
)
# Add info about transcript format
gr.Markdown(
"""
<div class="info-box">
<strong>Transcript Format:</strong> Use CHAT format with *PAR: for patient lines.
Mark word-finding with &-um, paraphasias with [*], and provide intended words with [: word].
</div>
""",
elem_classes="markdown-text"
)
# File upload
file_upload = gr.File(
label="Or upload a transcript file",
file_types=["text", "txt", "pdf", "rtf"]
)
# Analysis button
analyze_btn = gr.Button("Analyze Speech Sample", variant="primary", size="lg")
# Right column - Results section
with gr.Column(scale=1):
with gr.Group(elem_classes="container results-container"):
with gr.Tabs() as results_tabs:
# Summary tab
with gr.TabItem("Summary", id=0, elem_classes="tab-content"):
with gr.Group():
gr.Markdown("### Key Findings", elem_classes="markdown-text")
speech_factors_md = gr.Markdown(elem_classes="markdown-text")
with gr.Accordion("CASL Assessment Results", open=True):
casl_results_md = gr.Markdown(elem_classes="markdown-text")
with gr.Accordion("Detailed Error Examples", open=True):
specific_errors_md = gr.Markdown(elem_classes="markdown-text")
# Treatment tab
with gr.TabItem("Treatment Plan", id=1, elem_classes="tab-content"):
gr.Markdown("### Recommended Treatment Approaches", elem_classes="markdown-text")
treatment_md = gr.Markdown(elem_classes="treatment-panel")
gr.Markdown("### Clinical Rationale", elem_classes="markdown-text")
explanation_md = gr.Markdown(elem_classes="panel")
with gr.Accordion("Supporting Evidence", open=False):
gr.Markdown("""
<table class="evidence-table">
<tr>
<th>Factor</th>
<th>Evidence-based Approaches</th>
<th>References</th>
</tr>
<tr>
<td>Word Retrieval</td>
<td>Semantic feature analysis, phonological cueing, word generation tasks</td>
<td>Boyle, 2010; Kiran & Thompson, 2003</td>
</tr>
<tr>
<td>Grammatical Errors</td>
<td>Treatment of Underlying Forms (TUF), Morphosyntactic therapy</td>
<td>Thompson et al., 2003; Ebbels, 2014</td>
</tr>
<tr>
<td>Fluency/Prosody</td>
<td>Rate control, rhythmic cueing, contrastive stress exercises</td>
<td>Ballard et al., 2010; Tamplin & Baker, 2017</td>
</tr>
</table>
""", elem_classes="markdown-text")
# Full report tab
with gr.TabItem("Full Report", id=2, elem_classes="tab-content"):
full_analysis = gr.Markdown()
# Add PDF export option
export_btn = gr.Button("Export Report as PDF", variant="secondary")
export_status = gr.Markdown("")
# Raw LLM Output tab
with gr.TabItem("Raw LLM Output", id=3, elem_classes="tab-content"):
gr.Markdown("### Complete Model Output", elem_classes="markdown-text")
gr.Markdown("This tab shows the unprocessed output from the AI model for debugging purposes.")
raw_llm_output = gr.Textbox(
label="Raw AI Output",
lines=20,
interactive=False
)
# ===============================
# Patient Records Tab
# ===============================
with gr.TabItem("Patient Records", id=1):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Patient Records")
# Records table
patient_records_table = gr.Dataframe(
headers=["ID", "Name", "Record ID", "Age", "Gender", "Assessment Date", "Clinician"],
datatype=["str", "str", "str", "str", "str", "str", "str"],
label="Saved Patients",
interactive=False
)
refresh_records_btn = gr.Button("Refresh Records", size="sm")
records_status = gr.Markdown("")
# Record selection
selected_record_id = gr.Textbox(label="Selected Record ID", visible=False)
load_record_btn = gr.Button("Load Selected Record", variant="primary")
with gr.Column(scale=1):
# Record details
record_details = gr.Markdown(label="Record Details")
# Event handlers for records
def refresh_patient_records():
"""Refresh the patient records table"""
records = get_all_patient_records()
data = []
for r in records:
data.append([
r["id"], r["name"], r["record_id"],
r["age"], r["gender"], r["assessment_date"], r["clinician"]
])
df = pd.DataFrame(data)
status_msg = f"Found {len(data)} patient records."
return df, status_msg
refresh_records_btn.click(
refresh_patient_records,
outputs=[patient_records_table, records_status]
)
# Automatically load records when tab is selected
main_tabs.select(
lambda tab_id: refresh_patient_records() if tab_id == 1 else (pd.DataFrame(), ""),
inputs=[main_tabs],
outputs=[patient_records_table, records_status]
)
# Load record when a row is selected
def handle_record_selection(evt: gr.SelectData, records):
if records is None or len(records) == 0:
return "", "No record selected."
selected_row = evt.index[0]
if selected_row < len(records):
record_id = records.iloc[selected_row, 0]
# Load the record to show details
record_data = load_patient_record(record_id)
if record_data:
patient_info = record_data.get("patient_info", {})
# Format record details as markdown
details = f"""
## Selected Patient Record
**Name:** {patient_info.get('name', 'N/A')}
**Record ID:** {patient_info.get('record_id', 'N/A')}
**Age:** {patient_info.get('age', 'N/A')}
**Gender:** {patient_info.get('gender', 'N/A')}
**Assessment Date:** {patient_info.get('assessment_date', 'N/A')}
**Clinician:** {patient_info.get('clinician', 'N/A')}
**Analyzed:** {record_data.get('timestamp', 'Unknown')}
### Preview
This record contains:
- Speech transcript analysis
- CASL assessment results
- Treatment recommendations
Click "Load Selected Record" to view the full analysis.
"""
return record_id, details
return record_id, f"Selected record: {record_id}"
return "", "Invalid selection."
patient_records_table.select(
handle_record_selection,
inputs=[patient_records_table],
outputs=[selected_record_id, record_details]
)
# Load record into analysis tab
def load_patient_record_to_analysis(record_id):
if not record_id:
return gr.update(selected=1), {}, "", "", "", "", "", ""
record_data = load_patient_record(record_id)
if not record_data:
return gr.update(selected=1), "", "", "", "male", "", "", ""
# Extract data
patient_info = record_data.get("patient_info", {})
transcript_text = record_data.get("transcript", "")
analysis_results = record_data.get("analysis_results", {})
# Create status message for the record loading
status_msg = f"✅ Record loaded successfully: {patient_info.get('name', 'Unknown')} ({record_id})"
# Now we should also load the analysis results
# In a future version, we would need to update all analysis outputs here as well
return (
gr.update(selected=0), # Switch to analysis tab
patient_info.get("name", ""),
patient_info.get("record_id", ""),
patient_info.get("age", ""),
patient_info.get("gender", "male"),
patient_info.get("assessment_date", ""),
patient_info.get("clinician", ""),
transcript_text,
status_msg
)
load_record_btn.click(
load_patient_record_to_analysis,
inputs=[selected_record_id],
outputs=[
main_tabs,
patient_name, record_id, age, gender,
assessment_date, clinician_name, transcript,
records_status
]
)
# ===============================
# Report Generator Tab
# ===============================
with gr.TabItem("Report Generator", id=2):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Generate Professional Reports")
# Patient info
with gr.Group(elem_classes="container patient-info"):
gr.Markdown("#### Patient Information")
report_patient_name = gr.Textbox(label="Patient Name", placeholder="Enter patient name")
report_record_id = gr.Textbox(label="Record ID", placeholder="Enter record ID")
report_age = gr.Number(label="Age", value=8, minimum=1, maximum=120)
report_gender = gr.Radio(["male", "female", "other"], label="Gender", value="male")
report_date = gr.Textbox(
label="Assessment Date",
placeholder="MM/DD/YYYY",
value=datetime.now().strftime('%m/%d/%Y')
)
report_clinician = gr.Textbox(label="Clinician", placeholder="Enter clinician name")
with gr.Group():
gr.Markdown("#### Assessment Results")
report_results = gr.Textbox(
label="Paste assessment results or notes here",
placeholder="Include key findings, test scores, and observations...",
lines=10
)
report_type = gr.Radio(
["Formal (for professionals)", "Parent-friendly"],
label="Report Type",
value="Formal (for professionals)"
)
generate_report_btn = gr.Button("Generate Report", variant="primary")
with gr.Column(scale=1):
report_output = gr.Markdown()
report_download_btn = gr.Button("Download Report as PDF", variant="secondary")
report_download_status = gr.Markdown("")
# ===============================
# Transcription Tool Tab
# ===============================
with gr.TabItem("Transcription Tool", id=3):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Audio Transcription Tool")
gr.Markdown("Upload an audio recording to automatically transcribe it in CHAT format.")
audio_input = gr.Audio(type="filepath", label="Upload Audio Recording")
with gr.Row():
transcription_age = gr.Number(label="Patient Age", value=8, minimum=1, maximum=120)
transcribe_btn = gr.Button("Transcribe Audio", variant="primary")
with gr.Column(scale=1):
transcription_output = gr.Textbox(
label="Transcription Result",
placeholder="Transcription will appear here...",
lines=12
)
with gr.Row():
copy_to_analysis_btn = gr.Button("Use for Analysis", variant="secondary")
edit_transcription_btn = gr.Button("Edit Transcription", variant="secondary")
# ===============================
# SLP Assistant Tab
# ===============================
with gr.TabItem("SLP Assistant", id=4):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### SLP Knowledge Assistant")
gr.Markdown("Ask questions about CASL assessment, therapy techniques, or SLP best practices.")
question_input = gr.Textbox(
label="Your Question",
placeholder="e.g., What activities help improve word-finding skills?",
lines=3
)
ask_question_btn = gr.Button("Ask Question", variant="primary")
# Quick question buttons
gr.Markdown("#### Common Questions")
with gr.Row():
q1_btn = gr.Button("What is CASL?")
q2_btn = gr.Button("How do I interpret scores?")
with gr.Row():
q3_btn = gr.Button("Activities for word finding")
q4_btn = gr.Button("When to reassess")
with gr.Column(scale=1):
answer_output = gr.Markdown()
with gr.Accordion("References", open=False):
gr.Markdown("""
- American Speech-Language-Hearing Association (ASHA)
- Comprehensive Assessment of Spoken Language (CASL-2) Manual
- Evidence-Based Practice in Speech-Language Pathology
- Current research in pediatric language intervention
""")
# ===============================
# Event Handlers
# ===============================
# Load sample transcript button
def load_sample():
return SAMPLE_TRANSCRIPT
sample_btn.click(load_sample, outputs=[transcript])
# File upload handler
file_upload.upload(process_upload, file_upload, transcript)
# Analysis button handler
def on_analyze_click(transcript_text, age_val, gender_val, patient_name_val, record_id_val, clinician_val, assessment_date_val):
if not transcript_text or len(transcript_text.strip()) < 50:
return (
"Error: Please provide a longer transcript for analysis.",
"The transcript is too short for meaningful analysis.",
"Please provide a speech sample with at least 50 characters.",
"Error: Insufficient data",
"Please provide a speech sample with at least 50 characters.",
"",
"",
""
)
try:
# Get the raw analysis response
results, _, _, full_text = analyze_transcript(transcript_text, age_val, gender_val)
# Extract speech factors section using section markers
speech_factors_section = ""
factors_pattern = re.compile(r"<SPEECH_FACTORS_START>(.*?)<SPEECH_FACTORS_END>", re.DOTALL)
factors_match = factors_pattern.search(full_text)
if factors_match:
speech_factors_section = factors_match.group(1).strip()
else:
# Fallback to old pattern if markers aren't found
old_factors_pattern = re.compile(r"(Difficulty producing fluent.*?)(?:Evaluation of CASL Skills|<CASL_SKILLS_START>)", re.DOTALL)
old_factors_match = old_factors_pattern.search(full_text)
if old_factors_match:
speech_factors_section = old_factors_match.group(1).strip()
else:
speech_factors_section = "Error extracting speech factors from analysis."
# Extract CASL skills section
casl_section = ""
casl_pattern = re.compile(r"<CASL_SKILLS_START>(.*?)<CASL_SKILLS_END>", re.DOTALL)
casl_match = casl_pattern.search(full_text)
if casl_match:
casl_section = casl_match.group(1).strip()
else:
# Fallback pattern
old_casl_pattern = re.compile(r"(?:Evaluation of CASL Skills:|Lexical/Semantic Skills:)(.*?)(?:Other analysis/Best plans of action:|<TREATMENT_RECOMMENDATIONS_START>)", re.DOTALL)
old_casl_match = old_casl_pattern.search(full_text)
if old_casl_match:
casl_section = old_casl_match.group(1).strip()
# Add a header if it's missing
if not casl_section.startswith("Lexical"):
casl_section = "Evaluation of CASL Skills:\n\n" + casl_section
else:
casl_section = "Error extracting CASL skills from analysis."
# Extract treatment recommendations
treatment_text = ""
treatment_pattern = re.compile(r"<TREATMENT_RECOMMENDATIONS_START>(.*?)<TREATMENT_RECOMMENDATIONS_END>", re.DOTALL)
treatment_match = treatment_pattern.search(full_text)
if treatment_match:
treatment_text = "### Treatment Recommendations\n\n" + treatment_match.group(1).strip()
else:
# Fallback pattern
old_treatment_pattern = re.compile(r"(?:Other analysis/Best plans of action:)(.*?)(?:Explanation:|<EXPLANATION_START>)", re.DOTALL)
old_treatment_match = old_treatment_pattern.search(full_text)
if old_treatment_match:
treatment_text = "### Treatment Recommendations\n\n" + old_treatment_match.group(1).strip()
elif 'treatment_suggestions' in results:
treatment_text = "### Treatment Recommendations\n\n"
for suggestion in results['treatment_suggestions']:
treatment_text += f"- {suggestion}\n"
# Extract explanation section
explanation_text = "### Clinical Rationale\n\n"
explanation_pattern = re.compile(r"<EXPLANATION_START>(.*?)<EXPLANATION_END>", re.DOTALL)
explanation_match = explanation_pattern.search(full_text)
if explanation_match:
explanation_text += explanation_match.group(1).strip()
else:
# Fallback pattern
old_explanation_pattern = re.compile(r"(?:Explanation:)(.*?)(?:Additional Analysis:|<ADDITIONAL_ANALYSIS_START>)", re.DOTALL)
old_explanation_match = old_explanation_pattern.search(full_text)
if old_explanation_match:
explanation_text += old_explanation_match.group(1).strip()
else:
explanation_text += results.get('explanation', "No explanation provided.")
# Extract additional analysis
additional_analysis = ""
additional_pattern = re.compile(r"<ADDITIONAL_ANALYSIS_START>(.*?)<ADDITIONAL_ANALYSIS_END>", re.DOTALL)
additional_match = additional_pattern.search(full_text)
if additional_match:
additional_analysis = additional_match.group(1).strip()
explanation_text += "\n\n### Additional Analysis\n\n" + additional_analysis
else:
# Fallback pattern
old_additional_pattern = re.compile(r"(?:Additional Analysis:)(.*?)(?:Diagnostic Impressions:|<DIAGNOSTIC_IMPRESSIONS_START>)", re.DOTALL)
old_additional_match = old_additional_pattern.search(full_text)
if old_additional_match:
explanation_text += "\n\n### Additional Analysis\n\n" + old_additional_match.group(1).strip()
elif 'additional_analysis' in results:
explanation_text += "\n\n### Additional Analysis\n\n" + results.get('additional_analysis', "")
# Extract diagnostic impressions
diagnostic_impressions = ""
diagnostic_pattern = re.compile(r"<DIAGNOSTIC_IMPRESSIONS_START>(.*?)<DIAGNOSTIC_IMPRESSIONS_END>", re.DOTALL)
diagnostic_match = diagnostic_pattern.search(full_text)
if diagnostic_match:
diagnostic_impressions = diagnostic_match.group(1).strip()
# Add to the explanation section
explanation_text += "\n\n### Diagnostic Impressions\n\n" + diagnostic_impressions
# Extract specific error examples
specific_errors_text = "## Detailed Error Examples\n\n"
# First try the dedicated section
errors_pattern = re.compile(r"<ERROR_EXAMPLES_START>(.*?)<ERROR_EXAMPLES_END>", re.DOTALL)
errors_match = errors_pattern.search(full_text)
if errors_match:
specific_errors_text += errors_match.group(1).strip()
else:
# Fallback to extracting examples from the text
example_sections = re.findall(r"Examples:\s*\n((?:- \".*\"\s*\n)+)", full_text)
for section in example_sections:
specific_errors_text += section + "\n"
if not example_sections:
specific_errors_text += "No specific error examples were found in the analysis."
# Save the record to storage
patient_info = {
"name": patient_name_val,
"record_id": record_id_val,
"age": age_val,
"gender": gender_val,
"assessment_date": assessment_date_val,
"clinician": clinician_val
}
saved_id = save_patient_record(patient_info, results, transcript_text)
save_message = ""
if saved_id:
save_message = f"""
✅ Patient record saved successfully.
**System ID:** {saved_id}
**Patient:** {patient_name_val or "Unnamed"}
**Record ID:** {record_id_val or "Not provided"}
You can access this record later in the Patient Records tab.
"""
else:
save_message = "⚠️ Failed to save patient record. Please check data directory permissions."
# Format to include patient metadata in the full report
patient_info_text = ""
if patient_name_val:
patient_info_text += f"**Patient:** {patient_name_val}\n"
if record_id_val:
patient_info_text += f"**Record ID:** {record_id_val}\n"
if age_val:
patient_info_text += f"**Age:** {age_val} years\n"
if gender_val:
patient_info_text += f"**Gender:** {gender_val}\n"
if assessment_date_val:
patient_info_text += f"**Assessment Date:** {assessment_date_val}\n"
if clinician_val:
patient_info_text += f"**Clinician:** {clinician_val}\n"
if saved_id:
patient_info_text += f"**System ID:** {saved_id}\n"
if patient_info_text:
full_report = f"## Patient Information\n\n{patient_info_text}\n\n## Analysis Report\n\n{full_text}"
else:
full_report = f"## Complete Analysis Report\n\n{full_text}"
# Get the raw LLM response for debugging
raw_output = full_text
return (
speech_factors_section,
casl_section,
treatment_text,
explanation_text,
full_report,
save_message,
specific_errors_text,
raw_output
)
except Exception as e:
logger.exception("Error during analysis")
error_message = f"Error during analysis: {str(e)}"
return (
f"Error: {str(e)}",
"Error: Analysis failed. Please check input data.",
"Error: Treatment analysis not available.",
"An error occurred while processing the transcript.",
f"Error details: {str(e)}",
"",
"",
f"Analysis failed with error: {error_message}\n\nPlease check your transcript format and try again."
)
analyze_btn.click(
on_analyze_click,
inputs=[
transcript, age, gender,
patient_name, record_id, clinician_name, assessment_date
],
outputs=[
speech_factors_md,
casl_results_md,
treatment_md,
explanation_md,
full_analysis,
export_status,
specific_errors_md,
raw_llm_output
]
)
# Export report functionality
def export_pdf(report_text, patient_name="Patient", record_id=""):
try:
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
import tempfile
import webbrowser
import os
# Generate a safe filename
if patient_name and record_id:
safe_name = f"{patient_name.replace(' ', '_')}_{record_id}"
elif patient_name:
safe_name = patient_name.replace(' ', '_')
else:
safe_name = f"speech_analysis_{datetime.now().strftime('%Y%m%d%H%M%S')}"
# Create a temporary file for the PDF
temp_dir = tempfile.gettempdir()
pdf_path = os.path.join(temp_dir, f"{safe_name}.pdf")
# Create the PDF document
doc = SimpleDocTemplate(pdf_path, pagesize=letter)
styles = getSampleStyleSheet()
# Create custom styles
styles.add(ParagraphStyle(
name='Heading1',
parent=styles['Heading1'],
fontSize=16,
spaceAfter=12
))
styles.add(ParagraphStyle(
name='Heading2',
parent=styles['Heading2'],
fontSize=14,
spaceAfter=10,
spaceBefore=10
))
styles.add(ParagraphStyle(
name='BodyText',
parent=styles['BodyText'],
fontSize=12,
spaceAfter=8
))
# Convert markdown to PDF elements
# Very basic conversion - in a real app, use a proper markdown to PDF library
story = []
# Add title
story.append(Paragraph("Speech Language Assessment Report", styles['Title']))
story.append(Spacer(1, 12))
# Process the markdown content line by line
current_style = styles['BodyText']
for line in report_text.split('\n'):
# Skip empty lines
if not line.strip():
story.append(Spacer(1, 6))
continue
# Check for headings
if line.startswith('# '):
story.append(Paragraph(line[2:], styles['Heading1']))
elif line.startswith('## '):
story.append(Paragraph(line[3:], styles['Heading2']))
elif line.startswith('- '):
# Bullet points
story.append(Paragraph('• ' + line[2:], styles['BodyText']))
elif line.startswith('**') and line.endswith('**'):
# Bold text - assuming it's a short line like a heading
text = line.replace('**', '')
story.append(Paragraph(f"<b>{text}</b>", styles['BodyText']))
else:
# Regular text
story.append(Paragraph(line, styles['BodyText']))
# Build the PDF
doc.build(story)
# Open the PDF (in a real web app, you'd provide a download link)
# This will work in a desktop environment
return f"Report saved as PDF: {pdf_path}"
except Exception as e:
logger.exception("Error creating PDF")
return f"Error creating PDF: {str(e)}\n\nIn a production environment, we would generate a proper PDF for download."
# Simplified simulation for HuggingFace Spaces environment
def export_pdf_simulation(report_text):
return "Report export initiated. In a production environment, a PDF would be generated and downloaded."
# Use the actual function in a desktop environment, simulation in web environment
if os.getenv("SPACE_ID"): # Check if running on HuggingFace Spaces
export_btn.click(
lambda x: export_pdf_simulation(x),
inputs=[full_analysis],
outputs=[export_status]
)
report_download_btn.click(
lambda x: export_pdf_simulation(x),
inputs=[report_output],
outputs=[report_download_status]
)
else:
# Running locally, use actual PDF generation
export_btn.click(
lambda x, y, z: export_pdf(x, y, z),
inputs=[full_analysis, patient_name, record_id],
outputs=[export_status]
)
report_download_btn.click(
lambda x, y, z: export_pdf(x, y, z),
inputs=[report_output, report_patient_name, report_record_id],
outputs=[report_download_status]
)
# Report generator button
def on_generate_report(name, record_id, age, gender, date, clinician, results, report_type):
patient_info = {
"name": name,
"record_id": record_id,
"age": age,
"gender": gender,
"assessment_date": date,
"clinician": clinician
}
report_type_val = "formal" if "Formal" in report_type else "parent-friendly"
try:
report = generate_report(patient_info, results, report_type_val)
return report
except Exception as e:
logger.exception("Error generating report")
return f"Error generating report: {str(e)}"
generate_report_btn.click(
on_generate_report,
inputs=[
report_patient_name, report_record_id, report_age,
report_gender, report_date, report_clinician,
report_results, report_type
],
outputs=[report_output]
)
# Transcription button
def on_transcribe_audio(audio_path, age):
try:
if not audio_path:
return "Please upload an audio file to transcribe."
transcription = transcribe_audio(audio_path, age)
return transcription
except Exception as e:
logger.exception("Error transcribing audio")
return f"Error transcribing audio: {str(e)}"
transcribe_btn.click(
on_transcribe_audio,
inputs=[audio_input, transcription_age],
outputs=[transcription_output]
)
# Copy transcription to analysis
def copy_to_analysis(transcription):
return transcription, gr.update(selected=0) # Switches to the Analysis tab
copy_to_analysis_btn.click(
copy_to_analysis,
inputs=[transcription_output],
outputs=[transcript, main_tabs]
)
# SLP Assistant question handling
def on_ask_question(question):
try:
answer = answer_slp_question(question)
return answer
except Exception as e:
logger.exception("Error getting answer")
return f"Error: {str(e)}"
ask_question_btn.click(
on_ask_question,
inputs=[question_input],
outputs=[answer_output]
)
# Quick question buttons
q1_btn.click(lambda: "What is CASL?", outputs=[question_input])
q2_btn.click(lambda: "How do I interpret CASL scores?", outputs=[question_input])
q3_btn.click(lambda: "What activities help with word finding difficulties?", outputs=[question_input])
q4_btn.click(lambda: "When should I reassess a patient?", outputs=[question_input])
return app
# ===============================
# Main Application
# ===============================
# Create requirements.txt file for HuggingFace Spaces
def create_requirements_file():
requirements = [
"gradio>=4.0.0",
"pandas",
"matplotlib",
"numpy",
"Pillow",
"PyPDF2",
"boto3",
"reportlab",
"uuid"
]
with open("requirements.txt", "w") as f:
for req in requirements:
f.write(f"{req}\n")
# Create and launch the interface
if __name__ == "__main__":
# Create requirements.txt for HuggingFace Spaces
create_requirements_file()
# Check for AWS credentials
if not AWS_ACCESS_KEY or not AWS_SECRET_KEY:
print("NOTE: AWS credentials not found. The app will run in demo mode with simulated responses.")
print("To enable full functionality, set AWS_ACCESS_KEY and AWS_SECRET_KEY environment variables.")
# Launch the Gradio app
app = create_interface()
app.launch() |