import gradio as gr import boto3 import json import pandas as pd import matplotlib.pyplot as plt import numpy as np import re import logging import os from PIL import Image import io import PyPDF2 import secrets # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # AWS credentials for Bedrock API # For HuggingFace Spaces, set these as secrets in the Space settings AWS_ACCESS_KEY = os.getenv("AWS_ACCESS_KEY", "") AWS_SECRET_KEY = os.getenv("AWS_SECRET_KEY", "") AWS_REGION = os.getenv("AWS_REGION", "us-east-1") # If we're on HuggingFace Spaces, use the HF_TOKEN (if available) HF_TOKEN = os.getenv("HF_TOKEN", "") USE_HF_INFERENCE = bool(HF_TOKEN) and len(HF_TOKEN) > 0 # Initialize Bedrock client if credentials are available bedrock_client = None if AWS_ACCESS_KEY and AWS_SECRET_KEY: try: bedrock_client = boto3.client( 'bedrock-runtime', aws_access_key_id=AWS_ACCESS_KEY, aws_secret_access_key=AWS_SECRET_KEY, region_name=AWS_REGION ) logger.info("Bedrock client initialized successfully") except Exception as e: logger.error(f"Failed to initialize Bedrock client: {str(e)}") # Sample transcript for the demo SAMPLE_TRANSCRIPT = """*PAR: today I would &-um like to talk about &-um a fun trip I took last &-um summer with my family. *PAR: we went to the &-um &-um beach [//] no to the mountains [//] I mean the beach actually. *PAR: there was lots of &-um &-um swimming and &-um sun. *PAR: we [/] we stayed for &-um three no [//] four days in a &-um hotel near the water [: ocean] [*]. *PAR: my favorite part was &-um building &-um castles with sand. *PAR: sometimes I forget [//] forgetted [: forgot] [*] what they call those things we built. *PAR: my brother he [//] he helped me dig a big hole. *PAR: we saw [/] saw fishies [: fish] [*] swimming in the water. *PAR: sometimes I wonder [/] wonder where fishies [: fish] [*] go when it's cold. *PAR: maybe they have [/] have houses under the water. *PAR: after swimming we [//] I eat [: ate] [*] &-um ice cream with &-um chocolate things on top. *PAR: what do you call those &-um &-um sprinkles! that's the word. *PAR: my mom said to &-um that I could have &-um two scoops next time. *PAR: I want to go back to the beach [/] beach next year.""" def read_pdf(file_path): """Read text from a PDF file""" try: with open(file_path, 'rb') as file: pdf_reader = PyPDF2.PdfReader(file) text = "" for page in pdf_reader.pages: text += page.extract_text() return text except Exception as e: logger.error(f"Error reading PDF: {str(e)}") return "" def call_bedrock(prompt): """Call the AWS Bedrock API to analyze text using Claude""" if not bedrock_client: return "AWS credentials not configured. Please set your AWS credentials as secrets in the HuggingFace Space settings." try: body = json.dumps({ "anthropic_version": "bedrock-2023-05-31", "max_tokens": 4096, "messages": [ { "role": "user", "content": prompt } ], "temperature": 0.3, "top_p": 0.9 }) modelId = 'anthropic.claude-3-sonnet-20240229-v1:0' response = bedrock_client.invoke_model( body=body, modelId=modelId, accept='application/json', contentType='application/json' ) response_body = json.loads(response.get('body').read()) return response_body['content'][0]['text'] except Exception as e: logger.error(f"Error in call_bedrock: {str(e)}") return f"Error: {str(e)}" def call_hf_inference(prompt): """Simulate LLM output for demo purposes when no API credentials are available""" # This function generates a realistic but fake response for demo purposes # In a real deployment, you would call an actual LLM API random_seed = sum(ord(c) for c in prompt) % 1000 # Generate a seed based on prompt np.random.seed(random_seed) # Simulate speech factors with random but reasonable values factors = [ "Difficulty producing fluent speech", "Word retrieval issues", "Grammatical errors", "Repetitions and revisions", "Neologisms", "Perseveration", "Comprehension issues" ] occurrences = np.random.randint(1, 15, size=len(factors)) percentiles = np.random.randint(30, 95, size=len(factors)) # Simulate CASL scores domains = ["Lexical/Semantic", "Syntactic", "Supralinguistic"] scores = np.random.randint(80, 115, size=3) percentiles_casl = [int(np.interp(s, [70, 85, 100, 115, 130], [2, 16, 50, 84, 98])) for s in scores] perf_levels = [] for s in scores: if s < 70: perf_levels.append("Well Below Average") elif s < 85: perf_levels.append("Below Average") elif s < 115: perf_levels.append("Average") elif s < 130: perf_levels.append("Above Average") else: perf_levels.append("Well Above Average") # Build response response = "## Speech Factor Analysis\n\n" for i, factor in enumerate(factors): response += f"{factor}: {occurrences[i]}, {percentiles[i]}\n" response += "\n## CASL-2 Assessment\n\n" for i, domain in enumerate(domains): response += f"{domain} Skills: Standard Score ({scores[i]}), Percentile Rank ({percentiles_casl[i]}%), Performance Level ({perf_levels[i]})\n" response += "\n## Other analysis/Best plans of action:\n\n" suggestions = [ "Implement word-finding strategies with semantic cuing", "Practice structured narrative tasks with visual supports", "Use sentence formulation exercises with increasing complexity", "Incorporate self-monitoring techniques during structured conversations", "Work on grammatical forms through structured practice" ] for suggestion in suggestions: response += f"- {suggestion}\n" response += "\n## Explanation:\n\n" response += "Based on the analysis, this patient demonstrates moderate word-finding difficulties with compensatory strategies like filler words and repetitions. Their syntactic skills show some weakness in verb tense consistency. Treatment should focus on building vocabulary access, grammatical accuracy, and narrative structure using scaffolded support.\n" response += "\n## Additional Analysis:\n\n" response += "The patient shows relative strengths in conversation maintenance and topic coherence. Consider building on these strengths while addressing specific language formulation challenges. Recommended frequency: 2-3 sessions per week for 10-12 weeks with periodic reassessment." return response def parse_analysis_response(response): """Parse the LLM response into structured data""" lines = response.split('\n') data = { 'Factor': [], 'Occurrences': [], 'Severity': [] } casl_data = { 'Domain': ['Lexical/Semantic', 'Syntactic', 'Supralinguistic'], 'Standard Score': [0, 0, 0], 'Percentile': [0, 0, 0], 'Performance Level': ['', '', ''] } treatment_suggestions = [] explanation = "" additional_analysis = "" # Pattern to match factor lines factor_pattern = re.compile(r'([\w\s/]+):\s*(\d+)[,\s]+(\d+)') # Pattern to match CASL data casl_pattern = re.compile(r'(\w+/?\w*)\s+Skills:\s+Standard\s+Score\s+\((\d+)\),\s+Percentile\s+Rank\s+\((\d+)%\),\s+Performance\s+Level\s+\(([\w\s]+)\)') in_suggestions = False in_explanation = False in_additional = False for line in lines: line = line.strip() # Skip empty lines if not line: continue # Check for factor data factor_match = factor_pattern.search(line) if factor_match: factor = factor_match.group(1).strip() occurrences = int(factor_match.group(2)) severity = int(factor_match.group(3)) data['Factor'].append(factor) data['Occurrences'].append(occurrences) data['Severity'].append(severity) continue # Check for CASL data casl_match = casl_pattern.search(line) if casl_match: domain = casl_match.group(1) score = int(casl_match.group(2)) percentile = int(casl_match.group(3)) level = casl_match.group(4) if "Lexical" in domain: casl_data['Standard Score'][0] = score casl_data['Percentile'][0] = percentile casl_data['Performance Level'][0] = level elif "Syntactic" in domain: casl_data['Standard Score'][1] = score casl_data['Percentile'][1] = percentile casl_data['Performance Level'][1] = level elif "Supralinguistic" in domain: casl_data['Standard Score'][2] = score casl_data['Percentile'][2] = percentile casl_data['Performance Level'][2] = level continue # Check for section headers if "Other analysis/Best plans of action:" in line or "### Recommended Treatment Approaches" in line: in_suggestions = True in_explanation = False in_additional = False continue elif "Explanation:" in line or "### Clinical Rationale" in line: in_suggestions = False in_explanation = True in_additional = False continue elif "Additional Analysis:" in line: in_suggestions = False in_explanation = False in_additional = True continue # Add content to appropriate section if in_suggestions and line.startswith("- "): treatment_suggestions.append(line[2:]) # Remove the bullet point elif in_explanation: explanation += line + "\n" elif in_additional: additional_analysis += line + "\n" return { 'speech_factors': pd.DataFrame(data), 'casl_data': pd.DataFrame(casl_data), 'treatment_suggestions': treatment_suggestions, 'explanation': explanation, 'additional_analysis': additional_analysis } def create_plots(speech_factors, casl_data): """Create visualizations for the analysis results""" # Set a professional style for the plots plt.style.use('seaborn-v0_8-pastel') # Create figure with two subplots fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6), dpi=100) # Plot speech factors - sorted by occurrence count if not speech_factors.empty: # Sort the dataframe speech_factors_sorted = speech_factors.sort_values('Occurrences', ascending=False) # Custom colors speech_colors = ['#4C72B0', '#55A868', '#C44E52', '#8172B3', '#CCB974', '#64B5CD', '#4C72B0'] # Create horizontal bar chart bars = ax1.barh(speech_factors_sorted['Factor'], speech_factors_sorted['Occurrences'], color=speech_colors[:len(speech_factors_sorted)]) # Add count labels at the end of each bar for bar in bars: width = bar.get_width() ax1.text(width + 0.3, bar.get_y() + bar.get_height()/2, f'{width:.0f}', ha='left', va='center') ax1.set_title('Speech Factors Analysis', fontsize=14, fontweight='bold') ax1.set_xlabel('Number of Occurrences', fontsize=11) # No y-label needed for horizontal bar chart # Remove top and right spines ax1.spines['top'].set_visible(False) ax1.spines['right'].set_visible(False) # Plot CASL domains domain_names = casl_data['Domain'] y_scores = casl_data['Standard Score'] # Custom color scheme casl_colors = ['#4C72B0', '#55A868', '#C44E52'] # Create bars with nice colors bars = ax2.bar(domain_names, y_scores, color=casl_colors) # Add score labels on top of each bar for bar in bars: height = bar.get_height() ax2.text(bar.get_x() + bar.get_width()/2., height + 1, f'{height:.0f}', ha='center', va='bottom') # Add score reference lines ax2.axhline(y=100, linestyle='--', color='gray', alpha=0.7, label='Average (100)') ax2.axhline(y=85, linestyle=':', color='orange', alpha=0.7, label='Below Average (<85)') ax2.axhline(y=115, linestyle=':', color='green', alpha=0.7, label='Above Average (>115)') # Add labels and title ax2.set_title('CASL-2 Standard Scores', fontsize=14, fontweight='bold') ax2.set_ylabel('Standard Score', fontsize=11) ax2.set_ylim(bottom=0, top=max(130, max(y_scores) + 15)) # Set y-axis limit with some padding # Add legend ax2.legend(loc='upper right', fontsize='small') # Remove top and right spines ax2.spines['top'].set_visible(False) ax2.spines['right'].set_visible(False) plt.tight_layout() # Save plot to buffer buf = io.BytesIO() plt.savefig(buf, format='png', bbox_inches='tight') buf.seek(0) plt.close() return buf def create_radar_chart(speech_factors): """Create a radar chart for speech factors (percentiles)""" if speech_factors.empty or 'Severity' not in speech_factors.columns: # Create a placeholder image if no data plt.figure(figsize=(8, 8)) plt.text(0.5, 0.5, "No data available for radar chart", ha='center', va='center', fontsize=14) plt.axis('off') buf = io.BytesIO() plt.savefig(buf, format='png') buf.seek(0) plt.close() return buf # Prepare data for radar chart categories = speech_factors['Factor'].tolist() percentiles = speech_factors['Severity'].tolist() # Need to repeat first value to close the polygon categories = categories + [categories[0]] percentiles = percentiles + [percentiles[0]] # Convert to radians and calculate points N = len(categories) - 1 # Subtract 1 for the repeated point angles = [n / float(N) * 2 * np.pi for n in range(N)] angles += angles[:1] # Repeat the first angle to close the polygon # Create the plot fig = plt.figure(figsize=(8, 8)) ax = fig.add_subplot(111, polar=True) # Draw percentile lines with labels plt.xticks(angles[:-1], categories[:-1], size=12) ax.set_rlabel_position(0) plt.yticks([20, 40, 60, 80, 100], ["20", "40", "60", "80", "100"], color="grey", size=10) plt.ylim(0, 100) # Plot data ax.plot(angles, percentiles, linewidth=1, linestyle='solid', color='#4C72B0') ax.fill(angles, percentiles, color='#4C72B0', alpha=0.25) # Add title plt.title('Speech Factors Severity (Percentile)', size=15, fontweight='bold', pad=20) # Save to buffer buf = io.BytesIO() plt.savefig(buf, format='png', bbox_inches='tight') buf.seek(0) plt.close() return buf def analyze_transcript(transcript, age, gender): """Analyze a speech transcript using the Bedrock API or fallback to demo mode""" # Instructions for the LLM analysis instructions = """ You're a professional Speech-Language Pathologist analyzing this transcription sample. For your analysis, count occurrences of: 1. Difficulty producing fluent, grammatical speech - Speech that is slow, halting, with pauses while searching for words 2. Word retrieval issues - Trouble finding specific words, using fillers like "um", circumlocution, or semantically similar substitutions 3. Grammatical errors - Missing/incorrect function words, verb tense problems, simplified sentences 4. Repetitions and revisions - Repeating or restating due to word-finding or sentence construction difficulties 5. Neologisms - Creating nonexistent "new" words 6. Perseveration - Unintentionally repeating words or phrases 7. Comprehension issues - Difficulty understanding complex sentences or fast speech Analyze using the CASL-2 (Comprehensive Assessment of Spoken Language) framework: Lexical/Semantic Skills: - Evaluate vocabulary diversity, word retrieval difficulties, and semantic precision - Estimate Standard Score (mean=100, SD=15), percentile rank, and performance level Syntactic Skills: - Assess sentence structure, grammatical accuracy, and syntactic complexity - Estimate Standard Score, percentile rank, and performance level Supralinguistic Skills: - Evaluate figurative language use, inferencing, and contextual understanding - Estimate Standard Score, percentile rank, and performance level Format your analysis with: 1. Speech factor counts with severity percentiles 2. CASL-2 domain scores with performance levels 3. Treatment recommendations based on findings 4. Brief explanation of your rationale 5. Any additional insights """ # Prepare prompt for Claude prompt = f""" You are an experienced Speech-Language Pathologist analyzing this transcript for a patient who is {age} years old and {gender}. TRANSCRIPT: {transcript} {instructions} Be precise, professional, and empathetic in your analysis. Focus on the linguistic patterns present in the sample. """ # Call the appropriate API or fallback to demo mode if bedrock_client: response = call_bedrock(prompt) else: response = call_hf_inference(prompt) # Parse the response results = parse_analysis_response(response) # Create visualizations plot_image = create_plots(results['speech_factors'], results['casl_data']) radar_image = create_radar_chart(results['speech_factors']) return results, plot_image, radar_image, response def create_interface(): """Create the Gradio interface""" # Define custom theme colors primary_color = "#2C7FB8" # Professional blue secondary_color = "#f5f7fa" # Light background accent_color = "#78909C" # Gray-blue accent custom_theme = gr.themes.Soft( primary_hue=primary_color, secondary_hue=secondary_color, neutral_hue=accent_color, font=[gr.themes.GoogleFont("Inter"), "system-ui", "sans-serif"] ).set( body_background_fill=secondary_color, button_primary_background_fill=primary_color, button_primary_background_fill_hover=primary_color, button_primary_text_color="white", block_title_text_color=primary_color, block_label_text_color=accent_color, input_background_fill="#FFFFFF", ) with gr.Blocks(theme=custom_theme, css=""" .header { text-align: center; margin-bottom: 20px; } .header img { max-height: 100px; margin-bottom: 10px; } .container { border-radius: 10px; padding: 10px; margin-bottom: 20px; } .patient-info { background-color: #e3f2fd; } .speech-sample { background-color: #f0f8ff; } .results-container { background-color: #f9f9f9; } .viz-container { display: flex; justify-content: center; margin-bottom: 20px; } .footer { text-align: center; margin-top: 30px; padding: 10px; font-size: 0.8em; color: #78909C; } .info-box { background-color: #e8f5e9; border-left: 4px solid #4CAF50; padding: 10px 15px; margin-bottom: 15px; border-radius: 4px; } .warning-box { background-color: #fff8e1; border-left: 4px solid #FFC107; padding: 10px 15px; border-radius: 4px; } .markdown-text h3 { color: #2C7FB8; border-bottom: 1px solid #eaeaea; padding-bottom: 5px; } .evidence-table { border-collapse: collapse; width: 100%; } .evidence-table th, .evidence-table td { border: 1px solid #ddd; padding: 8px; text-align: left; } .evidence-table th { background-color: #f5f7fa; color: #333; } .evidence-table tr:nth-child(even) { background-color: #f9f9f9; } .tab-content { padding: 15px; background-color: white; border-radius: 0 0 8px 8px; box-shadow: 0 2px 5px rgba(0,0,0,0.05); } """) as app: # Create header with logo gr.HTML( """

CASL Speech Analysis Tool

A professional assessment tool for Speech-Language Pathologists

""" ) # Create main layout with gr.Row(): # Left column - Input section with gr.Column(scale=1): with gr.Box(elem_classes="container patient-info"): gr.Markdown("### Patient Information") with gr.Row(): patient_name = gr.Textbox(label="Patient Name", placeholder="Enter patient name") record_id = gr.Textbox(label="Record ID", placeholder="Enter record ID") with gr.Row(): age = gr.Number(label="Age", value=8, minimum=1, maximum=120) gender = gr.Radio(["male", "female", "other"], label="Gender", value="male") with gr.Row(): assessment_date = gr.Textbox(label="Assessment Date", placeholder="MM/DD/YYYY", value=None) clinician_name = gr.Textbox(label="Clinician", placeholder="Enter clinician name") with gr.Box(elem_classes="container speech-sample"): gr.Markdown("### Speech Sample") # Add sample button sample_btn = gr.Button("Load Sample Transcript", size="sm") # Transcript input transcript = gr.Textbox( label="Transcript", placeholder="Paste the speech transcript here...", lines=10 ) # Add info about transcript format gr.Markdown( """
Transcript Format: Use CHAT format with *PAR: for patient lines. Mark word-finding with &-um, paraphasias with [*], and provide intended words with [: word].
""", elem_classes="markdown-text" ) # File upload file_upload = gr.File( label="Or upload a transcript file", file_types=["text", "txt", "pdf", "rtf"] ) # Analysis button analyze_btn = gr.Button("Analyze Speech Sample", variant="primary", size="lg") # Add API credential section (collapsible) with gr.Accordion("API Configuration", open=False): gr.Markdown(""" ### AWS Bedrock Credentials For full functionality, add your AWS credentials as environment variables or secrets in your HuggingFace Space: - AWS_ACCESS_KEY - AWS_SECRET_KEY - AWS_REGION (default: us-east-1) Without credentials, the app will run in demo mode with simulated responses. """) # Right column - Results section with gr.Column(scale=1): with gr.Box(elem_classes="container results-container"): with gr.Tabs() as tabs: # Summary tab with gr.TabItem("Summary", id=0, elem_classes="tab-content"): with gr.Row(): output_image = gr.Image(label="Speech Factors & CASL-2 Scores", show_label=True, elem_classes="viz-container") with gr.Row(): radar_chart = gr.Image(label="Severity Profile", show_label=True, elem_classes="viz-container") with gr.Box(): gr.Markdown("### Key Findings", elem_classes="markdown-text") speech_factors_table = gr.DataFrame(label="Speech Factors Analysis", headers=["Factor", "Occurrences", "Severity (Percentile)"], interactive=False) casl_table = gr.DataFrame(label="CASL-2 Assessment", headers=["Domain", "Standard Score", "Percentile", "Performance Level"], interactive=False) # Treatment tab with gr.TabItem("Treatment Plan", id=1, elem_classes="tab-content"): gr.Markdown("### Recommended Treatment Approaches", elem_classes="markdown-text") treatment_md = gr.Markdown(elem_classes="treatment-panel") gr.Markdown("### Clinical Rationale", elem_classes="markdown-text") explanation_md = gr.Markdown(elem_classes="panel") with gr.Accordion("Supporting Evidence", open=False): gr.Markdown("""
Factor Evidence-based Approaches References
Word Retrieval Semantic feature analysis, phonological cueing, word generation tasks Boyle, 2010; Kiran & Thompson, 2003
Grammatical Errors Treatment of Underlying Forms (TUF), Morphosyntactic therapy Thompson et al., 2003; Ebbels, 2014
Fluency/Prosody Rate control, rhythmic cueing, contrastive stress exercises Ballard et al., 2010; Tamplin & Baker, 2017
""", elem_classes="markdown-text") # Evidence tab with gr.TabItem("Language Sample Evidence", id=2, elem_classes="tab-content"): gr.Markdown("### Speech Sample Evidence", elem_classes="markdown-text") # Create a collapsible section for each speech factor factors = ["Word Retrieval", "Grammatical Errors", "Repetitions/Revisions", "Fluency", "Neologisms", "Perseveration"] for factor in factors: with gr.Accordion(f"{factor} Examples", open=False): gr.Markdown(f"Examples of {factor.lower()} will be highlighted here from the transcript.") gr.Markdown("### Transcript Annotations", elem_classes="markdown-text") gr.Markdown("A detailed analysis of the transcript will appear here after processing.") # Full report tab with gr.TabItem("Full Report", id=3, elem_classes="tab-content"): full_analysis = gr.Markdown() # Add PDF export option export_btn = gr.Button("Export Report as PDF", variant="secondary") export_status = gr.Markdown("") # Footer gr.HTML( """ """ ) # Define app functions # Function to load sample transcript def load_sample(): return SAMPLE_TRANSCRIPT # Handle file upload def process_upload(file): if file is None: return "" file_path = file.name if file_path.endswith('.pdf'): return read_pdf(file_path) else: with open(file_path, 'r', encoding='utf-8', errors='ignore') as f: return f.read() # Handle analysis button click def on_analyze_click(transcript_text, age_val, gender_val, patient_name_val, record_id_val, clinician_val, assessment_date_val): if not transcript_text or len(transcript_text.strip()) < 50: return ( pd.DataFrame(), pd.DataFrame(), None, None, "Error: Please provide a longer transcript for analysis.", "The transcript is too short for meaningful analysis.", "Please provide a speech sample with at least 50 characters." ) try: results, plot_img, radar_img, full_text = analyze_transcript(transcript_text, age_val, gender_val) # Format treatment suggestions as markdown treatment_text = "" for i, suggestion in enumerate(results['treatment_suggestions']): treatment_text += f"- {suggestion}\n" # Format to include patient metadata in the full report patient_info = "" if patient_name_val: patient_info += f"**Patient:** {patient_name_val}\n" if record_id_val: patient_info += f"**Record ID:** {record_id_val}\n" if age_val: patient_info += f"**Age:** {age_val} years\n" if gender_val: patient_info += f"**Gender:** {gender_val}\n" if assessment_date_val: patient_info += f"**Assessment Date:** {assessment_date_val}\n" if clinician_val: patient_info += f"**Clinician:** {clinician_val}\n" if patient_info: full_report = f"## Patient Information\n\n{patient_info}\n\n## Analysis Report\n\n{full_text}" else: full_report = f"## Complete Analysis Report\n\n{full_text}" # Convert image buffers to PIL images plot_img_pil = Image.open(plot_img) radar_img_pil = Image.open(radar_img) return ( results['speech_factors'], results['casl_data'], plot_img_pil, radar_img_pil, treatment_text, results['explanation'], full_report ) except Exception as e: logger.exception("Error during analysis") return ( pd.DataFrame(), pd.DataFrame(), None, None, f"Error during analysis: {str(e)}", "An error occurred while processing the transcript.", f"Error details: {str(e)}" ) # Function to simulate PDF export def export_pdf(): # In a real app, this would generate a PDF # For this demo, we'll just return a status message return "Report export initiated. The PDF would be downloaded in a production environment." # Connect UI components to functions sample_btn.click(load_sample, outputs=[transcript]) file_upload.upload(process_upload, file_upload, transcript) export_btn.click(export_pdf, outputs=[export_status]) analyze_btn.click( on_analyze_click, inputs=[ transcript, age, gender, patient_name, record_id, clinician_name, assessment_date ], outputs=[ speech_factors_table, casl_table, output_image, radar_chart, treatment_md, explanation_md, full_analysis ] ) return app # Create requirements.txt file for HuggingFace Spaces def create_requirements_file(): requirements = [ "gradio>=4.0.0", "pandas", "matplotlib", "numpy", "Pillow", "PyPDF2", "boto3" ] with open("requirements.txt", "w") as f: for req in requirements: f.write(f"{req}\n") # Create and launch the interface if __name__ == "__main__": # Create requirements.txt for HuggingFace Spaces create_requirements_file() # Check for AWS credentials if not AWS_ACCESS_KEY or not AWS_SECRET_KEY: print("NOTE: AWS credentials not found. The app will run in demo mode with simulated responses.") print("To enable full functionality, set AWS_ACCESS_KEY and AWS_SECRET_KEY environment variables.") # Launch the Gradio app app = create_interface() app.launch()