Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import requests
|
3 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
def jina(url):
|
7 |
base_url = "https://r.jina.ai/"
|
8 |
url = base_url + url
|
@@ -27,62 +129,120 @@ def price_cities(url):
|
|
27 |
value_18k = value_18k.split('\n')[0]
|
28 |
|
29 |
return value_24k, value_22k, value_18k
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
# List of cities
|
31 |
-
cities = ['Ahmedabad', 'Ayodhya', 'Bangalore', 'Bhubaneswar', 'Chandigarh', 'Chennai',
|
32 |
-
'Coimbatore', 'Delhi',
|
33 |
'Madurai', 'Mangalore', 'Mumbai', 'Mysore', 'Nagpur', 'Nashik', 'Patna',
|
34 |
'Pune', 'Rajkot', 'Salem', 'Surat', 'Trichy', 'Vadodara', 'Vijayawada', 'Visakhapatnam']
|
35 |
|
36 |
-
#
|
|
|
|
|
37 |
st.sidebar.title("About the Project")
|
38 |
st.sidebar.write("This project fetches current gold rates for 24K, 22K, and 18K gold from GoodReturns for 28 Indian states. The rates for 1g, 8g, and 10g are displayed.")
|
39 |
st.sidebar.write("**Developed by:**")
|
40 |
st.sidebar.write("[Srish Rachamalla](https://www.linkedin.com/in/srishrachamalla/)")
|
41 |
st.sidebar.write("[Sai Teja Pallerla](https://www.linkedin.com/in/saiteja-pallerla-668734225/)")
|
42 |
|
43 |
-
# Main UI
|
44 |
-
st.title('Gold Rates in Indian Cities')
|
45 |
-
st.subheader('Select a city to view the current gold rates')
|
46 |
-
|
47 |
# Dropdown for city selection
|
48 |
selected_city = st.selectbox('Select a City', cities)
|
49 |
|
50 |
-
#
|
51 |
-
if
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
st.markdown("<br><hr><center><p style='color: grey;'>© 2024 All Rights Reserved</p></center><br>", unsafe_allow_html=True)
|
87 |
|
88 |
-
|
|
|
1 |
+
# import streamlit as st
|
2 |
+
# import requests
|
3 |
+
# import pandas as pd
|
4 |
+
|
5 |
+
# # Your backend functions
|
6 |
+
# def jina(url):
|
7 |
+
# base_url = "https://r.jina.ai/"
|
8 |
+
# url = base_url + url
|
9 |
+
# response = requests.get(url)
|
10 |
+
# return response.text
|
11 |
+
|
12 |
+
# def price_cities(url):
|
13 |
+
# text = jina(url)
|
14 |
+
# pos1 = text.find('**')
|
15 |
+
# new = text[:pos1]
|
16 |
+
|
17 |
+
# twentytwok = new[int(new.find('22K')):int(new.find('24K'))]
|
18 |
+
# value_22k = twentytwok[int(twentytwok.find('\n\n') + 1): int(twentytwok.find('\n\n+'))][3:]
|
19 |
+
# value_22k = value_22k.split('\n')[0]
|
20 |
+
|
21 |
+
# twentyfourk = new[int(new.find('24K')):int(new.find('18K'))]
|
22 |
+
# value_24k = twentyfourk[int(twentyfourk.find('\n\n') + 1): int(twentyfourk.find('\n\n+'))][3:]
|
23 |
+
# value_24k = value_24k.split('\n')[0]
|
24 |
+
|
25 |
+
# eighteenk = new[int(new.find('18K')):]
|
26 |
+
# value_18k = eighteenk[int(eighteenk.find('\n\n') + 1): int(eighteenk.find('\n\n+'))][3:]
|
27 |
+
# value_18k = value_18k.split('\n')[0]
|
28 |
+
|
29 |
+
# return value_24k, value_22k, value_18k
|
30 |
+
# # List of cities
|
31 |
+
# cities = ['Ahmedabad', 'Ayodhya', 'Bangalore', 'Bhubaneswar', 'Chandigarh', 'Chennai',
|
32 |
+
# 'Coimbatore', 'Delhi', 'Hyderabad', 'Jaipur', 'Kerala', 'Kolkata', 'Lucknow',
|
33 |
+
# 'Madurai', 'Mangalore', 'Mumbai', 'Mysore', 'Nagpur', 'Nashik', 'Patna',
|
34 |
+
# 'Pune', 'Rajkot', 'Salem', 'Surat', 'Trichy', 'Vadodara', 'Vijayawada', 'Visakhapatnam']
|
35 |
+
|
36 |
+
# # Sidebar content
|
37 |
+
# st.sidebar.title("About the Project")
|
38 |
+
# st.sidebar.write("This project fetches current gold rates for 24K, 22K, and 18K gold from GoodReturns for 28 Indian states. The rates for 1g, 8g, and 10g are displayed.")
|
39 |
+
# st.sidebar.write("**Developed by:**")
|
40 |
+
# st.sidebar.write("[Srish Rachamalla](https://www.linkedin.com/in/srishrachamalla/)")
|
41 |
+
# st.sidebar.write("[Sai Teja Pallerla](https://www.linkedin.com/in/saiteja-pallerla-668734225/)")
|
42 |
+
|
43 |
+
# # Main UI
|
44 |
+
# st.title('Gold Rates in Indian Cities')
|
45 |
+
# st.subheader('Select a city to view the current gold rates')
|
46 |
+
|
47 |
+
# # Dropdown for city selection
|
48 |
+
# selected_city = st.selectbox('Select a City', cities)
|
49 |
+
|
50 |
+
# # Fetch and display gold rates
|
51 |
+
# if selected_city:
|
52 |
+
# city_url = f"https://www.goodreturns.in/gold-rates/{selected_city}.html"
|
53 |
+
|
54 |
+
# # Fetch the prices using your backend function
|
55 |
+
# try:
|
56 |
+
# value_24k, value_22k, value_18k = price_cities(city_url)
|
57 |
+
|
58 |
+
# # Convert string values to float for calculation
|
59 |
+
# value_22k = round(float(value_22k.replace(',', '')),2)
|
60 |
+
# value_24k = round(float(value_24k.replace(',', '')),2)
|
61 |
+
# value_18k = round(float(value_18k.replace(',', '')),2)
|
62 |
+
# # Prepare data for table
|
63 |
+
# data = {
|
64 |
+
# # 'SNO': [1, 2, 3],
|
65 |
+
# 'Gold Purity': ['24K', '22K', '18K'],
|
66 |
+
# '1g Price (₹)': [value_24k, value_22k, value_18k],
|
67 |
+
# '8g Price (₹)': [value_24k * 8, value_22k * 8, value_18k * 8],
|
68 |
+
# '10g Price (₹)': [value_24k * 10, value_22k * 10, value_18k * 10]
|
69 |
+
# }
|
70 |
+
|
71 |
+
# # Create a DataFrame for display
|
72 |
+
# df = pd.DataFrame(data,index=[1, 2, 3])
|
73 |
+
|
74 |
+
# # Display the DataFrame as a table
|
75 |
+
# st.write(f"Gold rates in {selected_city}:")
|
76 |
+
# st.dataframe(df.style.format(precision=2).set_properties(**{
|
77 |
+
# 'background-color': 'black',
|
78 |
+
# 'color': 'white',
|
79 |
+
# 'border-color': 'ash'
|
80 |
+
# }))
|
81 |
+
|
82 |
+
|
83 |
+
# except Exception as e:
|
84 |
+
# st.error(f"Could not fetch the gold rates. Please try again.{e}")
|
85 |
+
|
86 |
+
# st.markdown("<br><hr><center><p style='color: grey;'>© 2024 All Rights Reserved</p></center><br>", unsafe_allow_html=True)
|
87 |
+
|
88 |
+
|
89 |
import streamlit as st
|
90 |
import requests
|
91 |
import pandas as pd
|
92 |
+
import pymongo
|
93 |
+
import datetime
|
94 |
+
from pymongo import MongoClient
|
95 |
+
import matplotlib.pyplot as plt
|
96 |
+
import os
|
97 |
+
|
98 |
+
# Fetch the secret key from environment variables
|
99 |
+
Mongo_ip = os.getenv("Mongo_IP")
|
100 |
|
101 |
+
|
102 |
+
# Connect to MongoDB
|
103 |
+
client = MongoClient('mongodb+srv://srishnotebooks:[email protected]/?retryWrites=true&w=majority&appName=Goldrates')
|
104 |
+
db = client.GoldRates
|
105 |
+
collection = db['GoldRates']
|
106 |
+
|
107 |
+
# Backend functions
|
108 |
def jina(url):
|
109 |
base_url = "https://r.jina.ai/"
|
110 |
url = base_url + url
|
|
|
129 |
value_18k = value_18k.split('\n')[0]
|
130 |
|
131 |
return value_24k, value_22k, value_18k
|
132 |
+
|
133 |
+
# Helper function to insert data only once per day (no time constraint)
|
134 |
+
def insert_data_if_not_exists(city, date, value_24k, value_22k, value_18k):
|
135 |
+
query = {"Date": date, "Place": city}
|
136 |
+
if not collection.find_one(query):
|
137 |
+
document = {
|
138 |
+
"Date": date,
|
139 |
+
"Place": city,
|
140 |
+
"GoldRate_24k": float(value_24k.replace(',', '')),
|
141 |
+
"GoldRate_22k": float(value_22k.replace(',', '')),
|
142 |
+
"GoldRate_18k": float(value_18k.replace(',', ''))
|
143 |
+
}
|
144 |
+
collection.insert_one(document)
|
145 |
+
# st.success(f"Gold rates for {city} on {date} have been saved to MongoDB.")
|
146 |
+
|
147 |
+
# Function to fetch weekly data for chart
|
148 |
+
def fetch_weekly_data(city):
|
149 |
+
today = datetime.datetime.today()
|
150 |
+
start_date = today - datetime.timedelta(days=7)
|
151 |
+
query = {"Place": city, "Date": {"$gte": start_date.strftime("%Y-%m-%d")}}
|
152 |
+
return list(collection.find(query).sort("Date", -1))
|
153 |
+
|
154 |
+
# Function to check if it's the first run of the day after 12:30 PM
|
155 |
+
def is_first_run_after_1230():
|
156 |
+
today = datetime.datetime.today()
|
157 |
+
time_check = today.replace(hour=12, minute=30, second=0, microsecond=0)
|
158 |
+
date_check = today.strftime("%Y-%m-%d")
|
159 |
+
return today >= time_check and not collection.find_one({"Date": date_check})
|
160 |
+
|
161 |
+
# Fetch and save rates for all cities
|
162 |
+
def fetch_and_save_all_cities():
|
163 |
+
date_today = datetime.datetime.today().strftime("%Y-%m-%d")
|
164 |
+
for city in cities:
|
165 |
+
city_url = f"https://www.goodreturns.in/gold-rates/{city}.html"
|
166 |
+
try:
|
167 |
+
value_24k, value_22k, value_18k = price_cities(city_url)
|
168 |
+
insert_data_if_not_exists(city, date_today, value_24k, value_22k, value_18k)
|
169 |
+
except Exception as e:
|
170 |
+
st.error(f"Could not fetch the gold rates for {city}. {e}")
|
171 |
+
|
172 |
# List of cities
|
173 |
+
cities = ['Hyderabad', 'Ahmedabad', 'Ayodhya', 'Bangalore', 'Bhubaneswar', 'Chandigarh', 'Chennai',
|
174 |
+
'Coimbatore', 'Delhi', 'Jaipur', 'Kerala', 'Kolkata', 'Lucknow',
|
175 |
'Madurai', 'Mangalore', 'Mumbai', 'Mysore', 'Nagpur', 'Nashik', 'Patna',
|
176 |
'Pune', 'Rajkot', 'Salem', 'Surat', 'Trichy', 'Vadodara', 'Vijayawada', 'Visakhapatnam']
|
177 |
|
178 |
+
# Main UI
|
179 |
+
st.title('Gold Rates in Indian Cities')
|
180 |
+
st.subheader('Select a city to view the current gold rates and a weekly trend.')
|
181 |
st.sidebar.title("About the Project")
|
182 |
st.sidebar.write("This project fetches current gold rates for 24K, 22K, and 18K gold from GoodReturns for 28 Indian states. The rates for 1g, 8g, and 10g are displayed.")
|
183 |
st.sidebar.write("**Developed by:**")
|
184 |
st.sidebar.write("[Srish Rachamalla](https://www.linkedin.com/in/srishrachamalla/)")
|
185 |
st.sidebar.write("[Sai Teja Pallerla](https://www.linkedin.com/in/saiteja-pallerla-668734225/)")
|
186 |
|
|
|
|
|
|
|
|
|
187 |
# Dropdown for city selection
|
188 |
selected_city = st.selectbox('Select a City', cities)
|
189 |
|
190 |
+
# Generate button
|
191 |
+
if st.button("Generate Gold Rates"):
|
192 |
+
# If it's the first time after 12:30 PM, fetch and save rates for all cities
|
193 |
+
if is_first_run_after_1230():
|
194 |
+
fetch_and_save_all_cities()
|
195 |
+
st.success("Gold rates for all cities have been fetched and saved.")
|
196 |
+
|
197 |
+
# Fetch and display gold rates for the selected city
|
198 |
+
if selected_city:
|
199 |
+
date_today = datetime.datetime.today().strftime("%Y-%m-%d")
|
200 |
+
city_url = f"https://www.goodreturns.in/gold-rates/{selected_city}.html"
|
201 |
+
|
202 |
+
try:
|
203 |
+
value_24k, value_22k, value_18k = price_cities(city_url)
|
204 |
+
insert_data_if_not_exists(selected_city, date_today, value_24k, value_22k, value_18k)
|
205 |
+
|
206 |
+
# Prepare data for current rates
|
207 |
+
current_data = {
|
208 |
+
'Gold Purity': ['24K', '22K', '18K'],
|
209 |
+
'1g Price (₹)': [float(value_24k.replace(',', '')), float(value_22k.replace(',', '')), float(value_18k.replace(',', ''))],
|
210 |
+
'8g Price (₹)': [float(value_24k.replace(',', '')) * 8, float(value_22k.replace(',', '')) * 8, float(value_18k.replace(',', '')) * 8],
|
211 |
+
'10g Price (₹)': [float(value_24k.replace(',', '')) * 10, float(value_22k.replace(',', '')) * 10, float(value_18k.replace(',', '')) * 10]
|
212 |
+
}
|
213 |
+
|
214 |
+
# Display current data
|
215 |
+
df = pd.DataFrame(current_data)
|
216 |
+
st.write(f"Gold rates in {selected_city} as of {date_today}:")
|
217 |
+
st.dataframe(df.style.format(precision=2).set_properties(**{
|
218 |
+
'background-color': 'black',
|
219 |
+
'color': 'white',
|
220 |
+
'border-color': 'gray'
|
221 |
+
}))
|
222 |
+
|
223 |
+
# Weekly trend data
|
224 |
+
weekly_data = fetch_weekly_data(selected_city)
|
225 |
+
if weekly_data:
|
226 |
+
dates = [doc["Date"] for doc in weekly_data]
|
227 |
+
rates_24k = [doc["GoldRate_24k"] for doc in weekly_data]
|
228 |
+
rates_22k = [doc["GoldRate_22k"] for doc in weekly_data]
|
229 |
+
rates_18k = [doc["GoldRate_18k"] for doc in weekly_data]
|
230 |
+
|
231 |
+
# Plot weekly trends
|
232 |
+
plt.figure(figsize=(10, 5))
|
233 |
+
plt.plot(dates, rates_24k, label="24K Gold", color="gold", marker='o')
|
234 |
+
plt.plot(dates, rates_22k, label="22K Gold", color="red", marker='o')
|
235 |
+
plt.plot(dates, rates_18k, label="18K Gold", color="brown", marker='o')
|
236 |
+
plt.title(f"Gold Rates Trend in {selected_city} (Past Week)")
|
237 |
+
plt.xlabel("Date")
|
238 |
+
plt.ylabel("Price (₹)")
|
239 |
+
plt.legend()
|
240 |
+
plt.xticks(rotation=45)
|
241 |
+
st.pyplot(plt)
|
242 |
+
|
243 |
+
except Exception as e:
|
244 |
+
st.error(f"Could not fetch the gold rates. Please try again. {e}")
|
245 |
+
|
246 |
+
# Footer
|
247 |
st.markdown("<br><hr><center><p style='color: grey;'>© 2024 All Rights Reserved</p></center><br>", unsafe_allow_html=True)
|
248 |
|
|