Added Generate All FUNC and Interactive Graphs
Browse files
app.py
CHANGED
@@ -86,41 +86,210 @@
|
|
86 |
# st.markdown("<br><hr><center><p style='color: grey;'>© 2024 All Rights Reserved</p></center><br>", unsafe_allow_html=True)
|
87 |
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
import streamlit as st
|
90 |
import requests
|
91 |
import pandas as pd
|
92 |
import pymongo
|
93 |
import datetime
|
|
|
94 |
from pymongo import MongoClient
|
95 |
-
import
|
96 |
-
import
|
97 |
import ssl
|
98 |
-
import pytz # Importing pytz for timezone handling
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
# Fetch the secret key from environment variables
|
103 |
-
Mongo_ip = os.getenv("Mongo_IP")
|
104 |
|
105 |
# Setting up IST timezone
|
106 |
ist_timezone = pytz.timezone("Asia/Kolkata")
|
|
|
107 |
|
108 |
# Connect to MongoDB
|
|
|
|
|
109 |
client = MongoClient(
|
110 |
-
|
111 |
ssl=True,
|
112 |
ssl_cert_reqs=ssl.CERT_NONE # Bypass SSL certificate verification
|
113 |
)
|
114 |
db = client.GoldRates
|
115 |
collection = db['GoldRates']
|
116 |
-
|
|
|
|
|
|
|
|
|
117 |
# Backend functions
|
118 |
def jina(url):
|
119 |
base_url = "https://r.jina.ai/"
|
120 |
-
|
121 |
-
response = requests.get(url)
|
122 |
return response.text
|
123 |
-
|
124 |
def price_cities(url):
|
125 |
text = jina(url)
|
126 |
pos1 = text.find('**')
|
@@ -140,10 +309,8 @@ def price_cities(url):
|
|
140 |
|
141 |
return value_24k, value_22k, value_18k
|
142 |
|
143 |
-
# Helper function to insert data only once per day (no time constraint)
|
144 |
def insert_data_if_not_exists(city, date, value_24k, value_22k, value_18k):
|
145 |
-
|
146 |
-
if not collection.find_one(query):
|
147 |
document = {
|
148 |
"Date": date,
|
149 |
"Place": city,
|
@@ -153,21 +320,17 @@ def insert_data_if_not_exists(city, date, value_24k, value_22k, value_18k):
|
|
153 |
}
|
154 |
collection.insert_one(document)
|
155 |
|
156 |
-
# Function to fetch weekly data for chart
|
157 |
def fetch_weekly_data(city):
|
158 |
today = datetime.datetime.now(ist_timezone)
|
159 |
start_date = today - datetime.timedelta(days=7)
|
160 |
-
|
161 |
-
return list(collection.find(query).sort("Date", -1))
|
162 |
|
163 |
-
# Function to check if it's the first run of the day after 12:30 PM IST
|
164 |
def is_first_run_after_1230():
|
165 |
today = datetime.datetime.now(ist_timezone)
|
166 |
time_check = today.replace(hour=12, minute=30, second=0, microsecond=0)
|
167 |
date_check = today.strftime("%Y-%m-%d")
|
168 |
return today >= time_check and not collection.find_one({"Date": date_check})
|
169 |
|
170 |
-
# Fetch and save rates for all cities
|
171 |
def fetch_and_save_all_cities():
|
172 |
date_today = datetime.datetime.now(ist_timezone).strftime("%Y-%m-%d")
|
173 |
for city in cities:
|
@@ -178,41 +341,34 @@ def fetch_and_save_all_cities():
|
|
178 |
except Exception as e:
|
179 |
st.error(f"Could not fetch the gold rates for {city}. {e}")
|
180 |
|
181 |
-
#
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
st.sidebar.write("[Srish Rachamalla](https://www.linkedin.com/in/srishrachamalla/)")
|
194 |
-
st.sidebar.write("[Sai Teja Pallerla](https://www.linkedin.com/in/saiteja-pallerla-668734225/)")
|
195 |
-
|
196 |
-
# Dropdown for city selection
|
197 |
-
selected_city = st.selectbox('Select a City', cities)
|
198 |
|
199 |
-
#
|
200 |
-
|
201 |
-
# If it's the first time after 12:30 PM, fetch and save rates for all cities
|
202 |
-
if is_first_run_after_1230():
|
203 |
-
fetch_and_save_all_cities()
|
204 |
-
st.success("Gold rates for all cities have been fetched and saved.")
|
205 |
|
206 |
-
#
|
207 |
-
|
208 |
-
date_today = datetime.datetime.now(ist_timezone).strftime("%Y-%m-%d")
|
209 |
-
city_url = f"https://www.goodreturns.in/gold-rates/{selected_city}.html"
|
210 |
|
|
|
|
|
|
|
211 |
try:
|
212 |
value_24k, value_22k, value_18k = price_cities(city_url)
|
213 |
-
insert_data_if_not_exists(
|
|
|
214 |
|
215 |
-
# Prepare
|
216 |
current_data = {
|
217 |
'Gold Purity': ['24K', '22K', '18K'],
|
218 |
'1g Price (₹)': [float(value_24k.replace(',', '')), float(value_22k.replace(',', '')), float(value_18k.replace(',', ''))],
|
@@ -222,36 +378,178 @@ if st.button("Generate Gold Rates"):
|
|
222 |
|
223 |
# Display current data
|
224 |
df = pd.DataFrame(current_data)
|
225 |
-
st.
|
226 |
-
|
|
|
|
|
227 |
'background-color': 'black',
|
228 |
'color': 'white',
|
229 |
-
'border-color': 'gray'
|
230 |
-
|
231 |
-
|
232 |
-
#
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
|
252 |
except Exception as e:
|
253 |
-
st.error(f"Could not fetch the gold rates
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
|
255 |
-
|
256 |
-
st.markdown("<br><hr><center><p style='color: grey;'>© 2024 All Rights Reserved</p></center><br>", unsafe_allow_html=True)
|
257 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
# st.markdown("<br><hr><center><p style='color: grey;'>© 2024 All Rights Reserved</p></center><br>", unsafe_allow_html=True)
|
87 |
|
88 |
|
89 |
+
# import streamlit as st
|
90 |
+
# import requests
|
91 |
+
# import pandas as pd
|
92 |
+
# import pymongo
|
93 |
+
# import datetime
|
94 |
+
# from pymongo import MongoClient
|
95 |
+
# import matplotlib.pyplot as plt
|
96 |
+
# import os
|
97 |
+
# import ssl
|
98 |
+
# import pytz # Importing pytz for timezone handling
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
# # Fetch the secret key from environment variables
|
103 |
+
# Mongo_ip = os.getenv("Mongo_IP")
|
104 |
+
|
105 |
+
# # Setting up IST timezone
|
106 |
+
# ist_timezone = pytz.timezone("Asia/Kolkata")
|
107 |
+
|
108 |
+
# # Connect to MongoDB
|
109 |
+
# client = MongoClient(
|
110 |
+
# Mongo_ip,
|
111 |
+
# ssl=True,
|
112 |
+
# ssl_cert_reqs=ssl.CERT_NONE # Bypass SSL certificate verification
|
113 |
+
# )
|
114 |
+
# db = client.GoldRates
|
115 |
+
# collection = db['GoldRates']
|
116 |
+
|
117 |
+
# # Backend functions
|
118 |
+
# def jina(url):
|
119 |
+
# base_url = "https://r.jina.ai/"
|
120 |
+
# url = base_url + url
|
121 |
+
# response = requests.get(url)
|
122 |
+
# return response.text
|
123 |
+
|
124 |
+
# def price_cities(url):
|
125 |
+
# text = jina(url)
|
126 |
+
# pos1 = text.find('**')
|
127 |
+
# new = text[:pos1]
|
128 |
+
|
129 |
+
# twentytwok = new[int(new.find('22K')):int(new.find('24K'))]
|
130 |
+
# value_22k = twentytwok[int(twentytwok.find('\n\n') + 1): int(twentytwok.find('\n\n+'))][3:]
|
131 |
+
# value_22k = value_22k.split('\n')[0]
|
132 |
+
|
133 |
+
# twentyfourk = new[int(new.find('24K')):int(new.find('18K'))]
|
134 |
+
# value_24k = twentyfourk[int(twentyfourk.find('\n\n') + 1): int(twentyfourk.find('\n\n+'))][3:]
|
135 |
+
# value_24k = value_24k.split('\n')[0]
|
136 |
+
|
137 |
+
# eighteenk = new[int(new.find('18K')):]
|
138 |
+
# value_18k = eighteenk[int(eighteenk.find('\n\n') + 1): int(eighteenk.find('\n\n+'))][3:]
|
139 |
+
# value_18k = value_18k.split('\n')[0]
|
140 |
+
|
141 |
+
# return value_24k, value_22k, value_18k
|
142 |
+
|
143 |
+
# # Helper function to insert data only once per day (no time constraint)
|
144 |
+
# def insert_data_if_not_exists(city, date, value_24k, value_22k, value_18k):
|
145 |
+
# query = {"Date": date, "Place": city}
|
146 |
+
# if not collection.find_one(query):
|
147 |
+
# document = {
|
148 |
+
# "Date": date,
|
149 |
+
# "Place": city,
|
150 |
+
# "GoldRate_24k": float(value_24k.replace(',', '')),
|
151 |
+
# "GoldRate_22k": float(value_22k.replace(',', '')),
|
152 |
+
# "GoldRate_18k": float(value_18k.replace(',', ''))
|
153 |
+
# }
|
154 |
+
# collection.insert_one(document)
|
155 |
+
|
156 |
+
# # Function to fetch weekly data for chart
|
157 |
+
# def fetch_weekly_data(city):
|
158 |
+
# today = datetime.datetime.now(ist_timezone)
|
159 |
+
# start_date = today - datetime.timedelta(days=7)
|
160 |
+
# query = {"Place": city, "Date": {"$gte": start_date.strftime("%Y-%m-%d")}}
|
161 |
+
# return list(collection.find(query).sort("Date", -1))
|
162 |
+
|
163 |
+
# # Function to check if it's the first run of the day after 12:30 PM IST
|
164 |
+
# def is_first_run_after_1230():
|
165 |
+
# today = datetime.datetime.now(ist_timezone)
|
166 |
+
# time_check = today.replace(hour=12, minute=30, second=0, microsecond=0)
|
167 |
+
# date_check = today.strftime("%Y-%m-%d")
|
168 |
+
# return today >= time_check and not collection.find_one({"Date": date_check})
|
169 |
+
|
170 |
+
# # Fetch and save rates for all cities
|
171 |
+
# def fetch_and_save_all_cities():
|
172 |
+
# date_today = datetime.datetime.now(ist_timezone).strftime("%Y-%m-%d")
|
173 |
+
# for city in cities:
|
174 |
+
# city_url = f"https://www.goodreturns.in/gold-rates/{city}.html"
|
175 |
+
# try:
|
176 |
+
# value_24k, value_22k, value_18k = price_cities(city_url)
|
177 |
+
# insert_data_if_not_exists(city, date_today, value_24k, value_22k, value_18k)
|
178 |
+
# except Exception as e:
|
179 |
+
# st.error(f"Could not fetch the gold rates for {city}. {e}")
|
180 |
+
|
181 |
+
# # List of cities
|
182 |
+
# cities = ['Hyderabad', 'Ahmedabad', 'Ayodhya', 'Bangalore', 'Bhubaneswar', 'Chandigarh', 'Chennai',
|
183 |
+
# 'Coimbatore', 'Delhi', 'Jaipur', 'Kerala', 'Kolkata', 'Lucknow',
|
184 |
+
# 'Madurai', 'Mangalore', 'Mumbai', 'Mysore', 'Nagpur', 'Nashik', 'Patna',
|
185 |
+
# 'Pune', 'Rajkot', 'Salem', 'Surat', 'Trichy', 'Vadodara', 'Vijayawada', 'Visakhapatnam']
|
186 |
+
|
187 |
+
# # Main UI
|
188 |
+
# st.title('Gold Rates in Indian Cities')
|
189 |
+
# st.subheader('Select a city to view the current gold rates and a weekly trend.')
|
190 |
+
# st.sidebar.title("About the Project")
|
191 |
+
# st.sidebar.write("This project fetches current gold rates for 24K, 22K, and 18K gold from GoodReturns for 28 Indian states. The rates for 1g, 8g, and 10g are displayed.")
|
192 |
+
# st.sidebar.write("**Developed by:**")
|
193 |
+
# st.sidebar.write("[Srish Rachamalla](https://www.linkedin.com/in/srishrachamalla/)")
|
194 |
+
# st.sidebar.write("[Sai Teja Pallerla](https://www.linkedin.com/in/saiteja-pallerla-668734225/)")
|
195 |
+
|
196 |
+
# # Dropdown for city selection
|
197 |
+
# selected_city = st.selectbox('Select a City', cities)
|
198 |
+
|
199 |
+
# # Generate button
|
200 |
+
# if st.button("Generate Gold Rates"):
|
201 |
+
# # If it's the first time after 12:30 PM, fetch and save rates for all cities
|
202 |
+
# if is_first_run_after_1230():
|
203 |
+
# fetch_and_save_all_cities()
|
204 |
+
# st.success("Gold rates for all cities have been fetched and saved.")
|
205 |
+
|
206 |
+
# # Fetch and display gold rates for the selected city
|
207 |
+
# if selected_city:
|
208 |
+
# date_today = datetime.datetime.now(ist_timezone).strftime("%Y-%m-%d")
|
209 |
+
# city_url = f"https://www.goodreturns.in/gold-rates/{selected_city}.html"
|
210 |
+
|
211 |
+
# try:
|
212 |
+
# value_24k, value_22k, value_18k = price_cities(city_url)
|
213 |
+
# insert_data_if_not_exists(selected_city, date_today, value_24k, value_22k, value_18k)
|
214 |
+
|
215 |
+
# # Prepare data for current rates
|
216 |
+
# current_data = {
|
217 |
+
# 'Gold Purity': ['24K', '22K', '18K'],
|
218 |
+
# '1g Price (₹)': [float(value_24k.replace(',', '')), float(value_22k.replace(',', '')), float(value_18k.replace(',', ''))],
|
219 |
+
# '8g Price (₹)': [float(value_24k.replace(',', '')) * 8, float(value_22k.replace(',', '')) * 8, float(value_18k.replace(',', '')) * 8],
|
220 |
+
# '10g Price (₹)': [float(value_24k.replace(',', '')) * 10, float(value_22k.replace(',', '')) * 10, float(value_18k.replace(',', '')) * 10]
|
221 |
+
# }
|
222 |
+
|
223 |
+
# # Display current data
|
224 |
+
# df = pd.DataFrame(current_data)
|
225 |
+
# st.write(f"Gold rates in {selected_city} as of {date_today}:")
|
226 |
+
# st.dataframe(df.style.format(precision=2).set_properties(**{
|
227 |
+
# 'background-color': 'black',
|
228 |
+
# 'color': 'white',
|
229 |
+
# 'border-color': 'gray'
|
230 |
+
# }))
|
231 |
+
|
232 |
+
# # Weekly trend data
|
233 |
+
# weekly_data = fetch_weekly_data(selected_city)
|
234 |
+
# if weekly_data:
|
235 |
+
# dates = [doc["Date"] for doc in weekly_data]
|
236 |
+
# rates_24k = [doc["GoldRate_24k"] for doc in weekly_data]
|
237 |
+
# rates_22k = [doc["GoldRate_22k"] for doc in weekly_data]
|
238 |
+
# rates_18k = [doc["GoldRate_18k"] for doc in weekly_data]
|
239 |
+
|
240 |
+
# # Plot weekly trends
|
241 |
+
# plt.figure(figsize=(10, 5))
|
242 |
+
# plt.plot(dates, rates_24k, label="24K Gold", color="gold", marker='o')
|
243 |
+
# plt.plot(dates, rates_22k, label="22K Gold", color="red", marker='o')
|
244 |
+
# plt.plot(dates, rates_18k, label="18K Gold", color="brown", marker='o')
|
245 |
+
# plt.title(f"Gold Rates Trend in {selected_city} (Past Week)")
|
246 |
+
# plt.xlabel("Date")
|
247 |
+
# plt.ylabel("Price (₹)")
|
248 |
+
# plt.legend()
|
249 |
+
# plt.xticks(rotation=45)
|
250 |
+
# st.pyplot(plt)
|
251 |
+
|
252 |
+
# except Exception as e:
|
253 |
+
# st.error(f"Could not fetch the gold rates. Please try again. {e}")
|
254 |
+
|
255 |
+
# # Footer
|
256 |
+
# st.markdown("<br><hr><center><p style='color: grey;'>© 2024 All Rights Reserved</p></center><br>", unsafe_allow_html=True)
|
257 |
+
|
258 |
import streamlit as st
|
259 |
import requests
|
260 |
import pandas as pd
|
261 |
import pymongo
|
262 |
import datetime
|
263 |
+
import pytz
|
264 |
from pymongo import MongoClient
|
265 |
+
import plotly.graph_objs as go
|
266 |
+
from plotly.subplots import make_subplots
|
267 |
import ssl
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
|
269 |
# Setting up IST timezone
|
270 |
ist_timezone = pytz.timezone("Asia/Kolkata")
|
271 |
+
Mongo_ip = os.getenv("Mongo_IP")
|
272 |
|
273 |
# Connect to MongoDB
|
274 |
+
MONGO_URI = Mongo_ip
|
275 |
+
# client = MongoClient(MONGO_URI, ssl=True, ssl_cert_reqs=ssl.CERT_NONE)
|
276 |
client = MongoClient(
|
277 |
+
MONGO_URI,
|
278 |
ssl=True,
|
279 |
ssl_cert_reqs=ssl.CERT_NONE # Bypass SSL certificate verification
|
280 |
)
|
281 |
db = client.GoldRates
|
282 |
collection = db['GoldRates']
|
283 |
+
# List of cities
|
284 |
+
cities = ['Hyderabad', 'Ahmedabad', 'Ayodhya', 'Bangalore', 'Bhubaneswar', 'Chandigarh', 'Chennai',
|
285 |
+
'Coimbatore', 'Delhi', 'Jaipur', 'Kerala', 'Kolkata', 'Lucknow',
|
286 |
+
'Madurai', 'Mangalore', 'Mumbai', 'Mysore', 'Nagpur', 'Nashik', 'Patna',
|
287 |
+
'Pune', 'Rajkot', 'Salem', 'Surat', 'Trichy', 'Vadodara', 'Vijayawada', 'Visakhapatnam']
|
288 |
# Backend functions
|
289 |
def jina(url):
|
290 |
base_url = "https://r.jina.ai/"
|
291 |
+
response = requests.get(base_url + url)
|
|
|
292 |
return response.text
|
|
|
293 |
def price_cities(url):
|
294 |
text = jina(url)
|
295 |
pos1 = text.find('**')
|
|
|
309 |
|
310 |
return value_24k, value_22k, value_18k
|
311 |
|
|
|
312 |
def insert_data_if_not_exists(city, date, value_24k, value_22k, value_18k):
|
313 |
+
if not collection.find_one({"Date": date, "Place": city}):
|
|
|
314 |
document = {
|
315 |
"Date": date,
|
316 |
"Place": city,
|
|
|
320 |
}
|
321 |
collection.insert_one(document)
|
322 |
|
|
|
323 |
def fetch_weekly_data(city):
|
324 |
today = datetime.datetime.now(ist_timezone)
|
325 |
start_date = today - datetime.timedelta(days=7)
|
326 |
+
return list(collection.find({"Place": city, "Date": {"$gte": start_date.strftime("%Y-%m-%d")}}).sort("Date", -1))
|
|
|
327 |
|
|
|
328 |
def is_first_run_after_1230():
|
329 |
today = datetime.datetime.now(ist_timezone)
|
330 |
time_check = today.replace(hour=12, minute=30, second=0, microsecond=0)
|
331 |
date_check = today.strftime("%Y-%m-%d")
|
332 |
return today >= time_check and not collection.find_one({"Date": date_check})
|
333 |
|
|
|
334 |
def fetch_and_save_all_cities():
|
335 |
date_today = datetime.datetime.now(ist_timezone).strftime("%Y-%m-%d")
|
336 |
for city in cities:
|
|
|
341 |
except Exception as e:
|
342 |
st.error(f"Could not fetch the gold rates for {city}. {e}")
|
343 |
|
344 |
+
# Get last Friday's date
|
345 |
+
def get_last_friday():
|
346 |
+
today = datetime.datetime.now(ist_timezone)
|
347 |
+
last_friday = today - datetime.timedelta(days=(today.weekday() - 4) % 7)
|
348 |
+
return last_friday.strftime("%Y-%m-%d")
|
349 |
+
def fetch_historical_data(city, days=365): # Default to the past year
|
350 |
+
end_date = datetime.datetime.now(ist_timezone)
|
351 |
+
start_date = end_date - datetime.timedelta(days=days)
|
352 |
+
return list(collection.find({"Place": city, "Date": {"$gte": start_date.strftime("%Y-%m-%d"), "$lte": end_date.strftime("%Y-%m-%d")}}).sort("Date", 1))
|
353 |
+
def display_city_gold_rates(city):
|
354 |
+
today = datetime.datetime.now(ist_timezone)
|
355 |
+
date_to_fetch = today.strftime("%Y-%m-%d")
|
|
|
|
|
|
|
|
|
|
|
356 |
|
357 |
+
if today.weekday() >= 5: # Weekend
|
358 |
+
st.info("Today is a weekend. Showing last available data.")
|
|
|
|
|
|
|
|
|
359 |
|
360 |
+
# Attempt to retrieve document for today's date
|
361 |
+
doc = collection.find_one({"Date": date_to_fetch, "Place": city})
|
|
|
|
|
362 |
|
363 |
+
if not doc:
|
364 |
+
st.warning(f"No data found for {city} on {date_to_fetch}. Scraping for latest data...")
|
365 |
+
city_url = f"https://www.goodreturns.in/gold-rates/{city}.html"
|
366 |
try:
|
367 |
value_24k, value_22k, value_18k = price_cities(city_url)
|
368 |
+
insert_data_if_not_exists(city, date_to_fetch, value_24k, value_22k, value_18k)
|
369 |
+
st.success(f"Fetched latest gold rates for {city}.")
|
370 |
|
371 |
+
# Prepare current rates table with newly scraped data
|
372 |
current_data = {
|
373 |
'Gold Purity': ['24K', '22K', '18K'],
|
374 |
'1g Price (₹)': [float(value_24k.replace(',', '')), float(value_22k.replace(',', '')), float(value_18k.replace(',', ''))],
|
|
|
378 |
|
379 |
# Display current data
|
380 |
df = pd.DataFrame(current_data)
|
381 |
+
# st.dataframe(df)
|
382 |
+
|
383 |
+
# Create a styled dataframe for Streamlit
|
384 |
+
styled_df = df.style.format(precision=2).set_properties(**{
|
385 |
'background-color': 'black',
|
386 |
'color': 'white',
|
387 |
+
'border-color': 'gray',
|
388 |
+
'font-size': '16px',
|
389 |
+
'text-align': 'center'
|
390 |
+
}).set_table_attributes('style="width: 80%; margin: auto;"') # Center the table
|
391 |
+
|
392 |
+
st.dataframe(styled_df)
|
393 |
+
|
394 |
+
# Fetch historical data
|
395 |
+
historical_data = fetch_historical_data(city)
|
396 |
+
|
397 |
+
if historical_data:
|
398 |
+
dates = [doc["Date"] for doc in historical_data]
|
399 |
+
rates_24k = [doc["GoldRate_24k"] for doc in historical_data]
|
400 |
+
rates_22k = [doc["GoldRate_22k"] for doc in historical_data]
|
401 |
+
rates_18k = [doc["GoldRate_18k"] for doc in historical_data]
|
402 |
+
|
403 |
+
# Create an interactive Plotly line chart for the historical data
|
404 |
+
fig = make_subplots(specs=[[{"secondary_y": False}]])
|
405 |
+
|
406 |
+
# Add 24K data trace
|
407 |
+
fig.add_trace(
|
408 |
+
go.Scatter(x=dates, y=rates_24k, mode='lines+markers', name="24K Gold",
|
409 |
+
line=dict(color="gold"), marker=dict(size=8)),
|
410 |
+
secondary_y=False,
|
411 |
+
)
|
412 |
+
|
413 |
+
# Add 22K data trace
|
414 |
+
fig.add_trace(
|
415 |
+
go.Scatter(x=dates, y=rates_22k, mode='lines+markers', name="22K Gold",
|
416 |
+
line=dict(color="red"), marker=dict(size=8)),
|
417 |
+
secondary_y=False,
|
418 |
+
)
|
419 |
+
|
420 |
+
# Add 18K data trace
|
421 |
+
fig.add_trace(
|
422 |
+
go.Scatter(x=dates, y=rates_18k, mode='lines+markers', name="18K Gold",
|
423 |
+
line=dict(color="brown"), marker=dict(size=8)),
|
424 |
+
secondary_y=False,
|
425 |
+
)
|
426 |
+
|
427 |
+
# Set chart titles and layout
|
428 |
+
fig.update_layout(
|
429 |
+
title_text=f"Gold Rates Trend in {city} (Historical Data)",
|
430 |
+
xaxis_title="Date",
|
431 |
+
yaxis_title="Price (₹)",
|
432 |
+
hovermode="x unified",
|
433 |
+
template="plotly_dark"
|
434 |
+
)
|
435 |
+
|
436 |
+
# Display the interactive chart in Streamlit
|
437 |
+
st.plotly_chart(fig, use_container_width=True)
|
438 |
+
else:
|
439 |
+
st.warning(f"No historical data found for {city}.")
|
440 |
|
441 |
except Exception as e:
|
442 |
+
st.error(f"Could not fetch the gold rates for {city}. {e}")
|
443 |
+
return
|
444 |
+
# else:
|
445 |
+
# st.success(f"Gold Rates for {city} on {date_to_fetch}")
|
446 |
+
# Prepare current rates table
|
447 |
+
if doc:
|
448 |
+
st.success(f"Gold Rates for {city} on {date_to_fetch}")
|
449 |
+
|
450 |
+
# Prepare data for current rates
|
451 |
+
current_data = {
|
452 |
+
'Gold Purity': ['24K', '22K', '18K'],
|
453 |
+
'1g Price (₹)': [doc["GoldRate_24k"], doc["GoldRate_22k"], doc["GoldRate_18k"]],
|
454 |
+
'8g Price (₹)': [doc["GoldRate_24k"] * 8, doc["GoldRate_22k"] * 8, doc["GoldRate_18k"] * 8],
|
455 |
+
'10g Price (₹)': [doc["GoldRate_24k"] * 10, doc["GoldRate_22k"] * 10, doc["GoldRate_18k"] * 10]
|
456 |
+
}
|
457 |
+
|
458 |
+
# Display current data as a stylish table
|
459 |
+
df = pd.DataFrame(current_data)
|
460 |
+
|
461 |
+
# Create a styled dataframe for Streamlit
|
462 |
+
styled_df = df.style.format(precision=2).set_properties(**{
|
463 |
+
'background-color': 'black',
|
464 |
+
'color': 'white',
|
465 |
+
'border-color': 'gray',
|
466 |
+
'font-size': '16px',
|
467 |
+
'text-align': 'center'
|
468 |
+
}).set_table_attributes('style="width: 80%; margin: auto;"') # Center the table
|
469 |
+
|
470 |
+
st.dataframe(styled_df)
|
471 |
+
|
472 |
+
# Fetch historical data
|
473 |
+
historical_data = fetch_historical_data(city)
|
474 |
+
|
475 |
+
if historical_data:
|
476 |
+
dates = [doc["Date"] for doc in historical_data]
|
477 |
+
rates_24k = [doc["GoldRate_24k"] for doc in historical_data]
|
478 |
+
rates_22k = [doc["GoldRate_22k"] for doc in historical_data]
|
479 |
+
rates_18k = [doc["GoldRate_18k"] for doc in historical_data]
|
480 |
+
|
481 |
+
# Create an interactive Plotly line chart for the historical data
|
482 |
+
fig = make_subplots(specs=[[{"secondary_y": False}]])
|
483 |
+
|
484 |
+
# Add 24K data trace
|
485 |
+
fig.add_trace(
|
486 |
+
go.Scatter(x=dates, y=rates_24k, mode='lines+markers', name="24K Gold",
|
487 |
+
line=dict(color="gold"), marker=dict(size=8)),
|
488 |
+
secondary_y=False,
|
489 |
+
)
|
490 |
+
|
491 |
+
# Add 22K data trace
|
492 |
+
fig.add_trace(
|
493 |
+
go.Scatter(x=dates, y=rates_22k, mode='lines+markers', name="22K Gold",
|
494 |
+
line=dict(color="red"), marker=dict(size=8)),
|
495 |
+
secondary_y=False,
|
496 |
+
)
|
497 |
+
|
498 |
+
# Add 18K data trace
|
499 |
+
fig.add_trace(
|
500 |
+
go.Scatter(x=dates, y=rates_18k, mode='lines+markers', name="18K Gold",
|
501 |
+
line=dict(color="brown"), marker=dict(size=8)),
|
502 |
+
secondary_y=False,
|
503 |
+
)
|
504 |
+
|
505 |
+
# Set chart titles and layout
|
506 |
+
fig.update_layout(
|
507 |
+
title_text=f"Gold Rates Trend in {city} (Historical Data)",
|
508 |
+
xaxis_title="Date",
|
509 |
+
yaxis_title="Price (₹)",
|
510 |
+
hovermode="x unified",
|
511 |
+
template="plotly_dark"
|
512 |
+
)
|
513 |
+
|
514 |
+
# Display the interactive chart in Streamlit
|
515 |
+
st.plotly_chart(fig, use_container_width=True)
|
516 |
+
else:
|
517 |
+
st.warning(f"No historical data found for {city}.")
|
518 |
+
# else:
|
519 |
+
# st.warning(f"No data found for {city} on {date_to_fetch}.")
|
520 |
+
# Main UI
|
521 |
+
st.title('Gold Rates in Indian Cities')
|
522 |
+
st.subheader('Select a city to view the current gold rates and a weekly trend.')
|
523 |
+
st.sidebar.title("About the Project")
|
524 |
+
st.sidebar.write("This project fetches current gold rates for 24K, 22K, and 18K gold from GoodReturns for 28 Indian states. The rates for 1g, 8g, and 10g are displayed.")
|
525 |
+
st.sidebar.write("**Developed by:**")
|
526 |
+
st.sidebar.write("[Srish Rachamalla](https://www.linkedin.com/in/srishrachamalla/)")
|
527 |
+
st.sidebar.write("[Sai Teja Pallerla](https://www.linkedin.com/in/saiteja-pallerla-668734225/)")
|
528 |
|
529 |
+
selected_city = st.selectbox('Select a City', cities)
|
|
|
530 |
|
531 |
+
if st.button("Generate Gold Rates for Selected City"):
|
532 |
+
if is_first_run_after_1230() and datetime.datetime.now(ist_timezone).weekday() not in [5, 6]:
|
533 |
+
fetch_and_save_all_cities()
|
534 |
+
st.success("Gold rates for all cities have been fetched and saved.")
|
535 |
+
if selected_city:
|
536 |
+
display_city_gold_rates(selected_city)
|
537 |
+
|
538 |
+
if st.button("Generate All Gold Rates"):
|
539 |
+
current_time = datetime.datetime.now(ist_timezone).time()
|
540 |
+
if current_time >= datetime.time(13, 0) and datetime.datetime.now(ist_timezone).weekday() not in [5, 6]:
|
541 |
+
for city in cities:
|
542 |
+
if not collection.find_one({"Date": datetime.datetime.now(ist_timezone).strftime("%Y-%m-%d"), "Place": city}):
|
543 |
+
city_url = f"https://www.goodreturns.in/gold-rates/{city}.html"
|
544 |
+
try:
|
545 |
+
value_24k, value_22k, value_18k = price_cities(city_url)
|
546 |
+
insert_data_if_not_exists(city, datetime.datetime.now(ist_timezone).strftime("%Y-%m-%d"), value_24k, value_22k, value_18k)
|
547 |
+
st.success(f"Gold rates for {city} saved successfully.")
|
548 |
+
except Exception as e:
|
549 |
+
st.error(f"Could not fetch the gold rates for {city}. {e}")
|
550 |
+
st.success("Gold rates for all cities have been fetched and saved.")
|
551 |
+
else:
|
552 |
+
st.warning("Gold rates can only be saved to the database after 1 PM on weekdays.")
|
553 |
+
for city in cities:
|
554 |
+
st.subheader(f"Gold Rates in {city} as of {datetime.datetime.now(ist_timezone).strftime('%Y-%m-%d')}")
|
555 |
+
display_city_gold_rates(city)
|