Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,135 +1,135 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import gradio as gr
|
| 3 |
-
from groq import Groq
|
| 4 |
-
import os
|
| 5 |
-
from deep_translator import GoogleTranslator
|
| 6 |
-
from deep_translator import GoogleTranslator # Import the GoogleTranslator class
|
| 7 |
-
import whisper
|
| 8 |
-
import gradio as gr
|
| 9 |
-
from groq import Groq
|
| 10 |
-
import os
|
| 11 |
-
from deep_translator import GoogleTranslator # Import the GoogleTranslator class
|
| 12 |
-
import pickle
|
| 13 |
-
import whisper
|
| 14 |
-
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
|
| 15 |
-
|
| 16 |
-
import torch
|
| 17 |
-
from huggingface_hub import hf_hub_download
|
| 18 |
-
from safetensors.torch import load_file
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
# Replace with your actual API key
|
| 22 |
-
api_key = "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"
|
| 23 |
-
client = Groq(api_key=api_key)
|
| 24 |
-
|
| 25 |
-
# Load the custom model for image generation
|
| 26 |
-
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 27 |
-
repo = "ByteDance/SDXL-Lightning"
|
| 28 |
-
ckpt = "sdxl_lightning_4step_unet.safetensors" # Ensure the correct checkpoint
|
| 29 |
-
|
| 30 |
-
# Load the custom UNet and set up the pipeline
|
| 31 |
-
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cpu", torch.float16)
|
| 32 |
-
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cpu"))
|
| 33 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cpu")
|
| 34 |
-
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
# Function to transcribe, translate, and generate an image
|
| 38 |
-
def process_audio(audio_path, generate_image):
|
| 39 |
-
if audio_path is None:
|
| 40 |
-
return "Please upload an audio file.", None, None
|
| 41 |
-
|
| 42 |
-
# Step 1: Transcribe audio
|
| 43 |
-
try:
|
| 44 |
-
with open(audio_path, "rb") as file:
|
| 45 |
-
transcription = client.audio.transcriptions.create(
|
| 46 |
-
file=(os.path.basename(audio_path), file.read()),
|
| 47 |
-
model="whisper-large-v3",
|
| 48 |
-
language="ta",
|
| 49 |
-
response_format="verbose_json",
|
| 50 |
-
)
|
| 51 |
-
tamil_text = transcription.text
|
| 52 |
-
except Exception as e:
|
| 53 |
-
return f"An error occurred during transcription: {str(e)}", None, None
|
| 54 |
-
|
| 55 |
-
# Step 2: Translate Tamil to English
|
| 56 |
-
try:
|
| 57 |
-
translator = GoogleTranslator(source='ta', target='en')
|
| 58 |
-
translation = translator.translate(tamil_text)
|
| 59 |
-
except Exception as e:
|
| 60 |
-
return tamil_text, f"An error occurred during translation: {str(e)}", None
|
| 61 |
-
|
| 62 |
-
# Step 3: Generate image (if selected)
|
| 63 |
-
if generate_image:
|
| 64 |
-
try:
|
| 65 |
-
# Use the custom model and pipeline to generate an image
|
| 66 |
-
img = pipe(translation, num_inference_steps=4, guidance_scale=0).images[0]
|
| 67 |
-
return tamil_text, translation, img
|
| 68 |
-
except Exception as e:
|
| 69 |
-
return tamil_text, translation, f"An error occurred during image generation: {str(e)}"
|
| 70 |
-
|
| 71 |
-
return tamil_text, translation, None
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
# Function for direct prompt to image generation
|
| 75 |
-
def generate_image_from_prompt(prompt):
|
| 76 |
-
try:
|
| 77 |
-
img = pipe(prompt, num_inference_steps=4, guidance_scale=0).images[0]
|
| 78 |
-
return img
|
| 79 |
-
except Exception as e:
|
| 80 |
-
return f"An error occurred during image generation: {str(e)}"
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
# Assuming your 'process_audio' and 'generate_image_from_prompt' functions are defined elsewhere
|
| 84 |
-
|
| 85 |
-
# Gradio interface with the requested customizations
|
| 86 |
-
with gr.Blocks(css="""
|
| 87 |
-
.gradio-container {background-color: #D8D2C2;}
|
| 88 |
-
.btn-red {background-color: red; color: white;}
|
| 89 |
-
.gr-button:hover {color: white !important;}
|
| 90 |
-
.gr-button {color: black !important;}
|
| 91 |
-
.gr-textbox {color: black !important;}
|
| 92 |
-
.gr-Tab {color: black !important;} /* Tab text color set to black */
|
| 93 |
-
""") as iface:
|
| 94 |
-
|
| 95 |
-
# Title
|
| 96 |
-
gr.Markdown("<h1 style='text-align: center; color:black;'>TransArt - Multimodal Application</h1>")
|
| 97 |
-
|
| 98 |
-
# First Tab: Audio to Text -> Image
|
| 99 |
-
with gr.Tab("Audio to Text"):
|
| 100 |
-
gr.Markdown("<h3 style='text-align: center; color:black;'>Upload audio file, translate and generate an image</h3>")
|
| 101 |
-
|
| 102 |
-
# Audio input and processing button
|
| 103 |
-
with gr.Row():
|
| 104 |
-
audio_input = gr.Audio(type="filepath", label="Upload Audio File")
|
| 105 |
-
generate_image_checkbox = gr.Checkbox(label="Generate Image", value=False)
|
| 106 |
-
|
| 107 |
-
# Outputs for transcription, translation, and image
|
| 108 |
-
outputs = [
|
| 109 |
-
gr.Textbox(label="Tamil Transcription"),
|
| 110 |
-
gr.Textbox(label="English Translation"),
|
| 111 |
-
gr.Image(label="Generated Image") # Expecting an image output
|
| 112 |
-
]
|
| 113 |
-
|
| 114 |
-
# Button for processing audio
|
| 115 |
-
btn = gr.Button("Proceed Audio", elem_classes="btn-red")
|
| 116 |
-
# Bind the correct function that returns transcription, translation, and an image
|
| 117 |
-
btn.click(fn=process_audio, inputs=[audio_input, generate_image_checkbox], outputs=outputs)
|
| 118 |
-
|
| 119 |
-
# Second Tab: Direct Prompt to Image Generation
|
| 120 |
-
with gr.Tab("Prompt to Image"):
|
| 121 |
-
gr.Markdown("<h3 style='text-align: center; color:black;'>Input a prompt and generate an image</h3>")
|
| 122 |
-
|
| 123 |
-
# Text input for the prompt
|
| 124 |
-
prompt_input = gr.Textbox(label="Enter Prompt", placeholder="Enter the scene description here...", lines=5)
|
| 125 |
-
|
| 126 |
-
# Image output
|
| 127 |
-
image_output = gr.Image(label="Generated Image") # Expecting an image output
|
| 128 |
-
|
| 129 |
-
# Button for generating the image from the prompt
|
| 130 |
-
btn_image = gr.Button("Proceed Image Generation", elem_classes="btn-red")
|
| 131 |
-
# Bind the correct function that returns an image
|
| 132 |
-
btn_image.click(fn=generate_image_from_prompt, inputs=prompt_input, outputs=image_output)
|
| 133 |
-
|
| 134 |
-
# Launch the interface
|
| 135 |
-
iface.launch(server_name="0.0.0.0")
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from groq import Groq
|
| 4 |
+
import os
|
| 5 |
+
from deep_translator import GoogleTranslator
|
| 6 |
+
from deep_translator import GoogleTranslator # Import the GoogleTranslator class
|
| 7 |
+
import whisper
|
| 8 |
+
import gradio as gr
|
| 9 |
+
from groq import Groq
|
| 10 |
+
import os
|
| 11 |
+
from deep_translator import GoogleTranslator # Import the GoogleTranslator class
|
| 12 |
+
import pickle
|
| 13 |
+
import whisper
|
| 14 |
+
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
|
| 15 |
+
|
| 16 |
+
import torch
|
| 17 |
+
from huggingface_hub import hf_hub_download
|
| 18 |
+
from safetensors.torch import load_file
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# Replace with your actual API key
|
| 22 |
+
api_key = "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"
|
| 23 |
+
client = Groq(api_key=api_key)
|
| 24 |
+
|
| 25 |
+
# Load the custom model for image generation
|
| 26 |
+
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 27 |
+
repo = "ByteDance/SDXL-Lightning"
|
| 28 |
+
ckpt = "sdxl_lightning_4step_unet.safetensors" # Ensure the correct checkpoint
|
| 29 |
+
|
| 30 |
+
# Load the custom UNet and set up the pipeline
|
| 31 |
+
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cpu", torch.float16)
|
| 32 |
+
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cpu"))
|
| 33 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cpu")
|
| 34 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
# Function to transcribe, translate, and generate an image
|
| 38 |
+
def process_audio(audio_path, generate_image):
|
| 39 |
+
if audio_path is None:
|
| 40 |
+
return "Please upload an audio file.", None, None
|
| 41 |
+
|
| 42 |
+
# Step 1: Transcribe audio
|
| 43 |
+
try:
|
| 44 |
+
with open(audio_path, "rb") as file:
|
| 45 |
+
transcription = client.audio.transcriptions.create(
|
| 46 |
+
file=(os.path.basename(audio_path), file.read()),
|
| 47 |
+
model="whisper-large-v3",
|
| 48 |
+
language="ta",
|
| 49 |
+
response_format="verbose_json",
|
| 50 |
+
)
|
| 51 |
+
tamil_text = transcription.text
|
| 52 |
+
except Exception as e:
|
| 53 |
+
return f"An error occurred during transcription: {str(e)}", None, None
|
| 54 |
+
|
| 55 |
+
# Step 2: Translate Tamil to English
|
| 56 |
+
try:
|
| 57 |
+
translator = GoogleTranslator(source='ta', target='en')
|
| 58 |
+
translation = translator.translate(tamil_text)
|
| 59 |
+
except Exception as e:
|
| 60 |
+
return tamil_text, f"An error occurred during translation: {str(e)}", None
|
| 61 |
+
|
| 62 |
+
# Step 3: Generate image (if selected)
|
| 63 |
+
if generate_image:
|
| 64 |
+
try:
|
| 65 |
+
# Use the custom model and pipeline to generate an image
|
| 66 |
+
img = pipe(translation, num_inference_steps=4, guidance_scale=0).images[0]
|
| 67 |
+
return tamil_text, translation, img
|
| 68 |
+
except Exception as e:
|
| 69 |
+
return tamil_text, translation, f"An error occurred during image generation: {str(e)}"
|
| 70 |
+
|
| 71 |
+
return tamil_text, translation, None
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
# Function for direct prompt to image generation
|
| 75 |
+
def generate_image_from_prompt(prompt):
|
| 76 |
+
try:
|
| 77 |
+
img = pipe(prompt, num_inference_steps=4, guidance_scale=0).images[0]
|
| 78 |
+
return img
|
| 79 |
+
except Exception as e:
|
| 80 |
+
return f"An error occurred during image generation: {str(e)}"
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
# Assuming your 'process_audio' and 'generate_image_from_prompt' functions are defined elsewhere
|
| 84 |
+
|
| 85 |
+
# Gradio interface with the requested customizations
|
| 86 |
+
with gr.Blocks(css="""
|
| 87 |
+
.gradio-container {background-color: #D8D2C2;}
|
| 88 |
+
.btn-red {background-color: red; color: white;}
|
| 89 |
+
.gr-button:hover {color: white !important;}
|
| 90 |
+
.gr-button {color: black !important;}
|
| 91 |
+
.gr-textbox {color: black !important;}
|
| 92 |
+
.gr-Tab {color: black !important;} /* Tab text color set to black */
|
| 93 |
+
""") as iface:
|
| 94 |
+
|
| 95 |
+
# Title
|
| 96 |
+
gr.Markdown("<h1 style='text-align: center; color:black;'>TransArt - Multimodal Application</h1>")
|
| 97 |
+
|
| 98 |
+
# First Tab: Audio to Text -> Image
|
| 99 |
+
with gr.Tab("Audio to Text"):
|
| 100 |
+
gr.Markdown("<h3 style='text-align: center; color:black;'>Upload audio file, translate and generate an image</h3>")
|
| 101 |
+
|
| 102 |
+
# Audio input and processing button
|
| 103 |
+
with gr.Row():
|
| 104 |
+
audio_input = gr.Audio(type="filepath", label="Upload Audio File")
|
| 105 |
+
generate_image_checkbox = gr.Checkbox(label="Generate Image", value=False)
|
| 106 |
+
|
| 107 |
+
# Outputs for transcription, translation, and image
|
| 108 |
+
outputs = [
|
| 109 |
+
gr.Textbox(label="Tamil Transcription"),
|
| 110 |
+
gr.Textbox(label="English Translation"),
|
| 111 |
+
gr.Image(label="Generated Image") # Expecting an image output
|
| 112 |
+
]
|
| 113 |
+
|
| 114 |
+
# Button for processing audio
|
| 115 |
+
btn = gr.Button("Proceed Audio", elem_classes="btn-red")
|
| 116 |
+
# Bind the correct function that returns transcription, translation, and an image
|
| 117 |
+
btn.click(fn=process_audio, inputs=[audio_input, generate_image_checkbox], outputs=outputs)
|
| 118 |
+
|
| 119 |
+
# Second Tab: Direct Prompt to Image Generation
|
| 120 |
+
with gr.Tab("Prompt to Image"):
|
| 121 |
+
gr.Markdown("<h3 style='text-align: center; color:black;'>Input a prompt and generate an image</h3>")
|
| 122 |
+
|
| 123 |
+
# Text input for the prompt
|
| 124 |
+
prompt_input = gr.Textbox(label="Enter Prompt", placeholder="Enter the scene description here...", lines=5)
|
| 125 |
+
|
| 126 |
+
# Image output
|
| 127 |
+
image_output = gr.Image(label="Generated Image") # Expecting an image output
|
| 128 |
+
|
| 129 |
+
# Button for generating the image from the prompt
|
| 130 |
+
btn_image = gr.Button("Proceed Image Generation", elem_classes="btn-red")
|
| 131 |
+
# Bind the correct function that returns an image
|
| 132 |
+
btn_image.click(fn=generate_image_from_prompt, inputs=prompt_input, outputs=image_output)
|
| 133 |
+
|
| 134 |
+
# Launch the interface
|
| 135 |
+
iface.launch(server_name="0.0.0.0")
|