Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
4 |
+
import torch
|
5 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
6 |
+
|
7 |
+
# Initialize FastAPI app
|
8 |
+
app = FastAPI(title="Stress Detection API", version="1.0")
|
9 |
+
|
10 |
+
model = AutoModelForSequenceClassification.from_pretrained("SrivarshiniGanesan/finetuned-stress-model")
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained("SrivarshiniGanesan/finetuned-stress-model")
|
12 |
+
|
13 |
+
# Request format
|
14 |
+
class TextInput(BaseModel):
|
15 |
+
text: str
|
16 |
+
|
17 |
+
@app.post("/predict")
|
18 |
+
def predict_stress(input_text: TextInput):
|
19 |
+
inputs = tokenizer(input_text.text, return_tensors="pt", padding=True, truncation=True)
|
20 |
+
with torch.no_grad():
|
21 |
+
logits = model(**inputs).logits
|
22 |
+
prediction = torch.argmax(logits, dim=-1).item()
|
23 |
+
|
24 |
+
return {"text": input_text.text, "stress_prediction": "Stress" if prediction == 1 else "No Stress"}
|
25 |
+
|
26 |
+
@app.get("/")
|
27 |
+
def home():
|
28 |
+
return {"message": "Welcome to the Stress Detection API!"}
|