Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,33 @@
|
|
1 |
-
from fastapi import FastAPI
|
2 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
|
3 |
import torch
|
4 |
|
5 |
-
# Verify model configuration
|
6 |
-
config = AutoConfig.from_pretrained("SrivarshiniGanesan/finetuned-stress-model")
|
7 |
-
print(config)
|
8 |
-
# Initialize FastAPI app
|
9 |
app = FastAPI()
|
|
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
12 |
tokenizer = AutoTokenizer.from_pretrained("SrivarshiniGanesan/finetuned-stress-model")
|
13 |
|
14 |
-
@app.get("/")
|
15 |
-
def home():
|
16 |
-
return {"message": "Stress Prediction API is running"}
|
17 |
-
|
18 |
@app.post("/predict/")
|
19 |
def predict(text: str):
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
23 |
probs = torch.softmax(outputs.logits, dim=-1)
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
|
3 |
import torch
|
4 |
|
|
|
|
|
|
|
|
|
5 |
app = FastAPI()
|
6 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
7 |
|
8 |
+
# Load config first
|
9 |
+
config = AutoConfig.from_pretrained("SrivarshiniGanesan/finetuned-stress-model")
|
10 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
11 |
+
"SrivarshiniGanesan/finetuned-stress-model",
|
12 |
+
config=config
|
13 |
+
).to(device)
|
14 |
tokenizer = AutoTokenizer.from_pretrained("SrivarshiniGanesan/finetuned-stress-model")
|
15 |
|
|
|
|
|
|
|
|
|
16 |
@app.post("/predict/")
|
17 |
def predict(text: str):
|
18 |
+
try:
|
19 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
|
20 |
+
with torch.no_grad():
|
21 |
+
outputs = model(**inputs)
|
22 |
+
|
23 |
probs = torch.softmax(outputs.logits, dim=-1)
|
24 |
+
class_labels = config.id2label if config.id2label else {0: "No Stress", 1: "Stress"}
|
25 |
+
stress_idx = list(class_labels.values()).index("Stress")
|
26 |
+
|
27 |
+
return {"stress_probability": probs[0, stress_idx].item()}
|
28 |
+
|
29 |
+
except Exception as e:
|
30 |
+
raise HTTPException(
|
31 |
+
status_code=500,
|
32 |
+
detail=f"Prediction failed: {str(e)}"
|
33 |
+
)
|