Spaces:
Sleeping
Sleeping
Eason Lu
commited on
Commit
·
cf5f1c9
1
Parent(s):
fd190b6
TO DO: need debug timestamp
Browse filesFormer-commit-id: 9cd06e3aa8996d0393cc07e512742cab2c0ea30c
- .gitignore +1 -0
- SRT.py +94 -11
- __pycache__/srt2ass.cpython-38.pyc +0 -0
- pipeline.py +99 -73
.gitignore
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
/downloads
|
| 2 |
/results
|
| 3 |
.DS_Store
|
|
|
|
| 4 |
test.py
|
| 5 |
test.srt
|
| 6 |
test.txt
|
|
|
|
| 1 |
/downloads
|
| 2 |
/results
|
| 3 |
.DS_Store
|
| 4 |
+
/__pycache__
|
| 5 |
test.py
|
| 6 |
test.srt
|
| 7 |
test.txt
|
SRT.py
CHANGED
|
@@ -3,14 +3,31 @@ import os
|
|
| 3 |
import whisper
|
| 4 |
|
| 5 |
class SRT_segment(object):
|
| 6 |
-
def __init__(self,
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
class SRT_script():
|
| 16 |
def __init__(self, segments) -> None:
|
|
@@ -18,13 +35,79 @@ class SRT_script():
|
|
| 18 |
for seg in segments:
|
| 19 |
srt_seg = SRT_segment(seg)
|
| 20 |
self.segments.append(srt_seg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
pass
|
| 25 |
|
| 26 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
# write srt file to path
|
|
|
|
|
|
|
| 28 |
pass
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
|
|
|
| 3 |
import whisper
|
| 4 |
|
| 5 |
class SRT_segment(object):
|
| 6 |
+
def __init__(self, *args) -> None:
|
| 7 |
+
if isinstance(args[0], dict):
|
| 8 |
+
segment = args[0]
|
| 9 |
+
self.start_time_str = str(0)+str(timedelta(seconds=int(segment['start'])))+',000'
|
| 10 |
+
self.end_time_str = str(0)+str(timedelta(seconds=int(segment['end'])))+',000'
|
| 11 |
+
self.segment_id = segment['id']+1
|
| 12 |
+
self.source_text = segment['text']
|
| 13 |
+
self.duration = f"{self.start_time_str} --> {self.end_time_str}"
|
| 14 |
+
self.translation = ""
|
| 15 |
+
elif isinstance(args[0], list):
|
| 16 |
+
self.segment_id = args[0][0]
|
| 17 |
+
self.source_text = args[0][2]
|
| 18 |
+
self.duration = args[0][1]
|
| 19 |
+
self.start_time_str = self.duration.split("-->")[0]
|
| 20 |
+
self.end_time_str = self.duration.split("-->")[1]
|
| 21 |
+
self.translation = ""
|
| 22 |
+
|
| 23 |
+
def __str__(self) -> str:
|
| 24 |
+
return f'{self.segment_id}\n{self.duration}\n{self.source_text}\n\n'
|
| 25 |
+
|
| 26 |
+
def get_trans_str(self) -> str:
|
| 27 |
+
return f'{self.segment_id}\n{self.duration}\n{self.translation}\n\n'
|
| 28 |
+
|
| 29 |
+
def get_bilingual_str(self) -> str:
|
| 30 |
+
return f'{self.segment_id}\n{self.duration}\n{self.source_text}\n{self.translation}\n\n'
|
| 31 |
|
| 32 |
class SRT_script():
|
| 33 |
def __init__(self, segments) -> None:
|
|
|
|
| 35 |
for seg in segments:
|
| 36 |
srt_seg = SRT_segment(seg)
|
| 37 |
self.segments.append(srt_seg)
|
| 38 |
+
|
| 39 |
+
@classmethod
|
| 40 |
+
def parse_from_srt_file(cls, path:str):
|
| 41 |
+
with open(path, 'r', encoding="utf-8") as f:
|
| 42 |
+
script_lines = f.read().splitlines()
|
| 43 |
+
|
| 44 |
+
segments = []
|
| 45 |
+
for i in range(len(script_lines)):
|
| 46 |
+
if i % 4 == 0:
|
| 47 |
+
segments.append(list(script_lines[i:i+4]))
|
| 48 |
|
| 49 |
+
return cls(segments)
|
| 50 |
+
|
| 51 |
+
def set_translation(self, translate:str, id_range:tuple):
|
| 52 |
+
start_seg_id = id_range[0]
|
| 53 |
+
end_seg_id = id_range[1]
|
| 54 |
+
|
| 55 |
+
lines = translate.split('\n\n')
|
| 56 |
+
print(id_range)
|
| 57 |
+
print(translate)
|
| 58 |
+
# print(len(translate))
|
| 59 |
+
|
| 60 |
+
for i, seg in enumerate(self.segments[start_seg_id-1:end_seg_id]):
|
| 61 |
+
seg.translation = lines[i]
|
| 62 |
pass
|
| 63 |
|
| 64 |
+
def get_source_only(self):
|
| 65 |
+
# return a string with pure source text
|
| 66 |
+
result = ""
|
| 67 |
+
for seg in self.segments:
|
| 68 |
+
result+=f'{seg.source_text}\n\n'
|
| 69 |
+
|
| 70 |
+
return result
|
| 71 |
+
|
| 72 |
+
def reform_src_str(self):
|
| 73 |
+
result = ""
|
| 74 |
+
for seg in self.segments:
|
| 75 |
+
result += str(seg)
|
| 76 |
+
return result
|
| 77 |
+
|
| 78 |
+
def reform_trans_str(self):
|
| 79 |
+
result = ""
|
| 80 |
+
for seg in self.segments:
|
| 81 |
+
result += seg.get_trans_str()
|
| 82 |
+
return result
|
| 83 |
+
|
| 84 |
+
def form_bilingual_str(self):
|
| 85 |
+
result = ""
|
| 86 |
+
for seg in self.segments:
|
| 87 |
+
result += seg.get_bilingual_str()
|
| 88 |
+
return result
|
| 89 |
+
|
| 90 |
+
def write_srt_file_src(self, path:str):
|
| 91 |
# write srt file to path
|
| 92 |
+
with open(path, "w", encoding='utf-8') as f:
|
| 93 |
+
f.write(self.reform_src_str())
|
| 94 |
pass
|
| 95 |
|
| 96 |
+
def write_srt_file_translate(self, path:str):
|
| 97 |
+
with open(path, "w", encoding='utf-8') as f:
|
| 98 |
+
f.write(self.reform_trans_str())
|
| 99 |
+
pass
|
| 100 |
+
|
| 101 |
+
def write_srt_file_bilingual(self, path:str):
|
| 102 |
+
with open(path, "w", encoding='utf-8') as f:
|
| 103 |
+
f.write(self.form_bilingual_str())
|
| 104 |
+
pass
|
| 105 |
+
|
| 106 |
+
def correct_with_force_term():
|
| 107 |
+
# force term correction
|
| 108 |
+
|
| 109 |
+
pass
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
|
| 113 |
|
__pycache__/srt2ass.cpython-38.pyc
DELETED
|
Binary file (13.9 kB)
|
|
|
pipeline.py
CHANGED
|
@@ -4,6 +4,8 @@ import argparse
|
|
| 4 |
import os
|
| 5 |
import whisper
|
| 6 |
from tqdm import tqdm
|
|
|
|
|
|
|
| 7 |
|
| 8 |
parser = argparse.ArgumentParser()
|
| 9 |
parser.add_argument("--link", help="youtube video link here", default=None, type=str, required=False)
|
|
@@ -84,96 +86,120 @@ if not os.path.exists(f'{RESULT_PATH}/{VIDEO_NAME}'):
|
|
| 84 |
|
| 85 |
# Instead of using the script_en variable directly, we'll use script_input
|
| 86 |
srt_file_en = args.srt_file
|
|
|
|
| 87 |
if srt_file_en is not None:
|
| 88 |
-
with open(srt_file_en, 'r', encoding='utf-8') as f:
|
| 89 |
-
|
|
|
|
|
|
|
| 90 |
else:
|
| 91 |
# using whisper to perform speech-to-text and save it in <video name>_en.txt under RESULT PATH.
|
| 92 |
srt_file_en = "{}/{}/{}_en.srt".format(RESULT_PATH, VIDEO_NAME, VIDEO_NAME)
|
| 93 |
if not os.path.exists(srt_file_en):
|
|
|
|
| 94 |
# use OpenAI API for transcribe
|
| 95 |
# transcript = openai.Audio.transcribe("whisper-1", audio_file)
|
| 96 |
|
| 97 |
# use local whisper model
|
| 98 |
-
model = whisper.load_model("base") # using base model in local machine (may use large model on our server)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
transcript = model.transcribe(audio_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
#Write SRT file
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
with open(srt_file_en, 'w', encoding="utf-8") as
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
script_en = f.read()
|
| 111 |
-
script_input = script_en
|
| 112 |
|
| 113 |
if not args.only_srt:
|
| 114 |
from srt2ass import srt2ass
|
| 115 |
assSub_en = srt2ass(srt_file_en, "default", "No", "Modest")
|
| 116 |
print('ASS subtitle saved as: ' + assSub_en)
|
| 117 |
|
| 118 |
-
# force translate the starcraft2 term into chinese according to the dict
|
| 119 |
-
# TODO: shortcut translation i.e. VA, ob
|
| 120 |
-
# TODO: variety of translation
|
| 121 |
-
from csv import reader
|
| 122 |
-
import re
|
| 123 |
-
|
| 124 |
-
# read dict
|
| 125 |
-
with open("finetune_data/dict.csv",'r', encoding='utf-8') as f:
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
def clean_timestamp(lines):
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
ready_lines = re.sub('\n', '\n ', script_input)
|
| 138 |
-
ready_words = ready_lines.split(" ")
|
| 139 |
-
i = 0
|
| 140 |
-
while i < len(ready_words):
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
script_input_withForceTerm = re.sub('\n ', '\n', "".join(ready_words))
|
| 158 |
-
|
|
|
|
| 159 |
|
| 160 |
# Split the video script by sentences and create chunks within the token limit
|
| 161 |
-
|
| 162 |
-
script_split =
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
script_arr.append(script.strip())
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
script_arr
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
# Translate and save
|
| 176 |
-
for s in tqdm(script_arr):
|
|
|
|
| 177 |
# using chatgpt model
|
| 178 |
if model_name == "gpt-3.5-turbo":
|
| 179 |
# print(s + "\n")
|
|
@@ -187,9 +213,8 @@ for s in tqdm(script_arr):
|
|
| 187 |
],
|
| 188 |
temperature=0.15
|
| 189 |
)
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
f.write("\n")
|
| 193 |
|
| 194 |
if model_name == "text-davinci-003":
|
| 195 |
prompt = f"Please help me translate this into Chinese:\n\n{s}\n\n"
|
|
@@ -203,10 +228,11 @@ for s in tqdm(script_arr):
|
|
| 203 |
frequency_penalty=0.0,
|
| 204 |
presence_penalty=0.0
|
| 205 |
)
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
-
|
| 208 |
-
f.write(response['choices'][0]['text'].strip())
|
| 209 |
-
f.write("\n")
|
| 210 |
|
| 211 |
if not args.only_srt:
|
| 212 |
assSub_zh = srt2ass(f"{RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_zh.srt", "default", "No", "Modest")
|
|
|
|
| 4 |
import os
|
| 5 |
import whisper
|
| 6 |
from tqdm import tqdm
|
| 7 |
+
from SRT import SRT_script
|
| 8 |
+
import stable_whisper
|
| 9 |
|
| 10 |
parser = argparse.ArgumentParser()
|
| 11 |
parser.add_argument("--link", help="youtube video link here", default=None, type=str, required=False)
|
|
|
|
| 86 |
|
| 87 |
# Instead of using the script_en variable directly, we'll use script_input
|
| 88 |
srt_file_en = args.srt_file
|
| 89 |
+
|
| 90 |
if srt_file_en is not None:
|
| 91 |
+
# with open(srt_file_en, 'r', encoding='utf-8') as f:
|
| 92 |
+
# script_input = f.read()
|
| 93 |
+
srt = SRT_script.parse_from_srt_file(srt_file_en)
|
| 94 |
+
script_input = srt.get_source_only()
|
| 95 |
else:
|
| 96 |
# using whisper to perform speech-to-text and save it in <video name>_en.txt under RESULT PATH.
|
| 97 |
srt_file_en = "{}/{}/{}_en.srt".format(RESULT_PATH, VIDEO_NAME, VIDEO_NAME)
|
| 98 |
if not os.path.exists(srt_file_en):
|
| 99 |
+
|
| 100 |
# use OpenAI API for transcribe
|
| 101 |
# transcript = openai.Audio.transcribe("whisper-1", audio_file)
|
| 102 |
|
| 103 |
# use local whisper model
|
| 104 |
+
# model = whisper.load_model("base") # using base model in local machine (may use large model on our server)
|
| 105 |
+
# transcript = model.transcribe(audio_path)
|
| 106 |
+
|
| 107 |
+
# use stable-whisper
|
| 108 |
+
model = stable_whisper.load_model('base')
|
| 109 |
transcript = model.transcribe(audio_path)
|
| 110 |
+
transcript.to_srt_vtt(srt_file_en)
|
| 111 |
+
transcript = transcript.to_dict()
|
| 112 |
+
srt = SRT_script(transcript['segments']) # read segments to SRT class
|
| 113 |
+
script_input = srt.get_source_only()
|
| 114 |
|
| 115 |
#Write SRT file
|
| 116 |
+
|
| 117 |
+
# from whisper.utils import WriteSRT
|
| 118 |
+
# with open(srt_file_en, 'w', encoding="utf-8") as f:
|
| 119 |
+
# writer = WriteSRT(RESULT_PATH)
|
| 120 |
+
# writer.write_result(transcript, f)
|
| 121 |
+
else:
|
| 122 |
+
srt = SRT_script.parse_from_srt_file(srt_file_en)
|
| 123 |
+
script_input = srt.get_source_only()
|
|
|
|
|
|
|
| 124 |
|
| 125 |
if not args.only_srt:
|
| 126 |
from srt2ass import srt2ass
|
| 127 |
assSub_en = srt2ass(srt_file_en, "default", "No", "Modest")
|
| 128 |
print('ASS subtitle saved as: ' + assSub_en)
|
| 129 |
|
| 130 |
+
# # force translate the starcraft2 term into chinese according to the dict
|
| 131 |
+
# # TODO: shortcut translation i.e. VA, ob
|
| 132 |
+
# # TODO: variety of translation
|
| 133 |
+
# from csv import reader
|
| 134 |
+
# import re
|
| 135 |
+
|
| 136 |
+
# # read dict
|
| 137 |
+
# with open("finetune_data/dict.csv",'r', encoding='utf-8') as f:
|
| 138 |
+
# csv_reader = reader(f)
|
| 139 |
+
# term_dict = {rows[0]:rows[1] for rows in csv_reader}
|
| 140 |
+
|
| 141 |
+
# def clean_timestamp(lines):
|
| 142 |
+
# new_lines = []
|
| 143 |
+
# strinfo = re.compile('[0-9]+\n.{25},[0-9]{3}') # 注意用4个\\\\来替换\
|
| 144 |
+
# new_lines = strinfo.sub('_-_', lines)
|
| 145 |
+
# print(new_lines)
|
| 146 |
+
# return new_lines
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
# ready_lines = re.sub('\n', '\n ', script_input)
|
| 150 |
+
# ready_words = ready_lines.split(" ")
|
| 151 |
+
# i = 0
|
| 152 |
+
# while i < len(ready_words):
|
| 153 |
+
# word = ready_words[i]
|
| 154 |
+
# if word[-2:] == ".\n" :
|
| 155 |
+
# if word[:-2].lower() in term_dict :
|
| 156 |
+
# new_word = word.replace(word[:-2], term_dict.get(word[:-2].lower())) + ' '
|
| 157 |
+
# ready_words[i] = new_word
|
| 158 |
+
# else :
|
| 159 |
+
# word += ' '
|
| 160 |
+
# ready_words[i] = word
|
| 161 |
+
# elif word.lower() in term_dict :
|
| 162 |
+
# new_word = word.replace(word,term_dict.get(word.lower())) + ' '
|
| 163 |
+
# ready_words[i] = new_word
|
| 164 |
+
# else :
|
| 165 |
+
# word += " "
|
| 166 |
+
# ready_words[i]= word
|
| 167 |
+
# i += 1
|
| 168 |
+
|
| 169 |
+
# script_input_withForceTerm = re.sub('\n ', '\n', "".join(ready_words))
|
| 170 |
+
|
| 171 |
+
srt.correct_with_force_term()
|
| 172 |
|
| 173 |
# Split the video script by sentences and create chunks within the token limit
|
| 174 |
+
def script_split(script_in, chunk_size = 1000):
|
| 175 |
+
script_split = script_in.split('\n\n')
|
| 176 |
+
script_arr = []
|
| 177 |
+
range_arr = []
|
| 178 |
+
start = 1
|
| 179 |
+
end = 0
|
| 180 |
+
script = ""
|
| 181 |
+
for sentence in script_split:
|
| 182 |
+
if len(script) + len(sentence) + 1 <= chunk_size:
|
| 183 |
+
script += sentence + '\n\n'
|
| 184 |
+
end+=1
|
| 185 |
+
else:
|
| 186 |
+
range_arr.append((start, end))
|
| 187 |
+
start = end+1
|
| 188 |
+
end += 1
|
| 189 |
+
script_arr.append(script.strip())
|
| 190 |
+
script = sentence + '\n\n'
|
| 191 |
+
if script.strip():
|
| 192 |
script_arr.append(script.strip())
|
| 193 |
+
range_arr.append((start, len(script_split)-1))
|
| 194 |
+
|
| 195 |
+
assert len(script_arr) == len(range_arr)
|
| 196 |
+
return script_arr, range_arr
|
| 197 |
+
|
| 198 |
+
script_arr, range_arr = script_split(script_input)
|
| 199 |
|
| 200 |
# Translate and save
|
| 201 |
+
for s, range in tqdm(zip(script_arr, range_arr)):
|
| 202 |
+
print(s)
|
| 203 |
# using chatgpt model
|
| 204 |
if model_name == "gpt-3.5-turbo":
|
| 205 |
# print(s + "\n")
|
|
|
|
| 213 |
],
|
| 214 |
temperature=0.15
|
| 215 |
)
|
| 216 |
+
|
| 217 |
+
translate = response['choices'][0]['message']['content'].strip()
|
|
|
|
| 218 |
|
| 219 |
if model_name == "text-davinci-003":
|
| 220 |
prompt = f"Please help me translate this into Chinese:\n\n{s}\n\n"
|
|
|
|
| 228 |
frequency_penalty=0.0,
|
| 229 |
presence_penalty=0.0
|
| 230 |
)
|
| 231 |
+
translate = response['choices'][0]['text'].strip()
|
| 232 |
+
|
| 233 |
+
srt.set_translation(translate, range)
|
| 234 |
|
| 235 |
+
srt.write_srt_file_translate(f"{RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_zh.srt")
|
|
|
|
|
|
|
| 236 |
|
| 237 |
if not args.only_srt:
|
| 238 |
assSub_zh = srt2ass(f"{RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_zh.srt", "default", "No", "Modest")
|