Spaces:
Sleeping
Sleeping
JiaenLiu
commited on
Commit
·
fb908a6
1
Parent(s):
6723c13
parse fix
Browse filesFormer-commit-id: 713a1c3babc77b7865e7aae1fbe0edd72ffaf381
evaluation/scores/LLM_eval.py
CHANGED
|
@@ -5,6 +5,7 @@
|
|
| 5 |
|
| 6 |
# Import the necessary packages
|
| 7 |
import re
|
|
|
|
| 8 |
from langchain.evaluation import load_evaluator, EvaluatorType
|
| 9 |
from langchain.prompts import PromptTemplate
|
| 10 |
from langchain.chat_models import ChatOpenAI
|
|
@@ -22,7 +23,7 @@ def init_evaluator(source_lang="en", target_lang="zh", domain="startcraft2", mod
|
|
| 22 |
|
| 23 |
llm = ChatOpenAI(temperature=0, model=model)
|
| 24 |
|
| 25 |
-
# Completeness is the percentage of the input that is translated
|
| 26 |
# Accuracy is the percentage of the translation that is correct
|
| 27 |
fstring = """
|
| 28 |
You are grading the translation based on following input:
|
|
@@ -83,16 +84,18 @@ def init_evaluator(source_lang="en", target_lang="zh", domain="startcraft2", mod
|
|
| 83 |
|
| 84 |
def parse_eval_result(data):
|
| 85 |
# Extract the value string
|
| 86 |
-
value_str = data.get('value', '')
|
| 87 |
-
reasoning_str = data.get('reasoning', '')
|
|
|
|
|
|
|
| 88 |
|
| 89 |
# Use regex to extract accuracy value and explanation
|
| 90 |
-
accuracy_match = re.search(r'
|
| 91 |
-
acc_explanation_match = re.search(r'
|
| 92 |
|
| 93 |
# Use regex to extract completeness value and explanation
|
| 94 |
-
completeness_match = re.search(r'
|
| 95 |
-
completeness_explanation_match = re.search(r'
|
| 96 |
|
| 97 |
# Extract the matched groups
|
| 98 |
completeness = int(completeness_match.group(1)) if completeness_match else None
|
|
@@ -108,13 +111,13 @@ def evaluate_prediction(input, reference, prediction, evaluator):
|
|
| 108 |
input=input,
|
| 109 |
reference=reference,
|
| 110 |
)
|
| 111 |
-
|
| 112 |
return parse_eval_result(eval_result)
|
| 113 |
|
| 114 |
if __name__ == "__main__":
|
| 115 |
evaluator = init_evaluator()
|
| 116 |
# For no input english sentence, just put "" in the input
|
| 117 |
-
accuracy, completeness = evaluate_prediction("
|
| 118 |
print("Accuracy:", accuracy[0])
|
| 119 |
print("Acc_Explanation:", accuracy[1])
|
| 120 |
print("Completeness:", completeness[0])
|
|
|
|
| 5 |
|
| 6 |
# Import the necessary packages
|
| 7 |
import re
|
| 8 |
+
|
| 9 |
from langchain.evaluation import load_evaluator, EvaluatorType
|
| 10 |
from langchain.prompts import PromptTemplate
|
| 11 |
from langchain.chat_models import ChatOpenAI
|
|
|
|
| 23 |
|
| 24 |
llm = ChatOpenAI(temperature=0, model=model)
|
| 25 |
|
| 26 |
+
# Completeness is the percentage of the input that is translated, to test if there is any missing information
|
| 27 |
# Accuracy is the percentage of the translation that is correct
|
| 28 |
fstring = """
|
| 29 |
You are grading the translation based on following input:
|
|
|
|
| 84 |
|
| 85 |
def parse_eval_result(data):
|
| 86 |
# Extract the value string
|
| 87 |
+
value_str = data.get('value', '').lower()
|
| 88 |
+
reasoning_str = data.get('reasoning', '').lower()
|
| 89 |
+
|
| 90 |
+
response = value_str + reasoning_str
|
| 91 |
|
| 92 |
# Use regex to extract accuracy value and explanation
|
| 93 |
+
accuracy_match = re.search(r'accuracy: (\d+)', response)
|
| 94 |
+
acc_explanation_match = re.search(r'accuracy: \d+\. (.+)', response)
|
| 95 |
|
| 96 |
# Use regex to extract completeness value and explanation
|
| 97 |
+
completeness_match = re.search(r'completeness: (\d+)', response)
|
| 98 |
+
completeness_explanation_match = re.search(r'completeness: \d+\. (.+)', response)
|
| 99 |
|
| 100 |
# Extract the matched groups
|
| 101 |
completeness = int(completeness_match.group(1)) if completeness_match else None
|
|
|
|
| 111 |
input=input,
|
| 112 |
reference=reference,
|
| 113 |
)
|
| 114 |
+
print(eval_result)
|
| 115 |
return parse_eval_result(eval_result)
|
| 116 |
|
| 117 |
if __name__ == "__main__":
|
| 118 |
evaluator = init_evaluator()
|
| 119 |
# For no input english sentence, just put "" in the input
|
| 120 |
+
accuracy, completeness = evaluate_prediction("it's obviously going to be 神族 trying to go for a 野炮台", " 每当我们看到BF开", " 每当我们看到BF开", evaluator)
|
| 121 |
print("Accuracy:", accuracy[0])
|
| 122 |
print("Acc_Explanation:", accuracy[1])
|
| 123 |
print("Completeness:", completeness[0])
|
evaluation/scores/multi_scores.py
CHANGED
|
@@ -50,7 +50,7 @@ class multi_scores:
|
|
| 50 |
comet_score = self.comet_model.predict([{"src":src, "mt":mt, "ref":ref}], batch_size=8, gpus=0).scores[0]
|
| 51 |
bleu_score = self.bleu_model.corpus_score([mt], [[ref]]).score
|
| 52 |
llm_acc, llm_completeness = LLM_eval.evaluate_prediction(src, ref, mt, self.LLM_model)
|
| 53 |
-
return {'bleu_score':bleu_score ,'comet_score':comet_score, 'llm_score':llm_acc[0], 'llm_explanation': llm_acc[1]}
|
| 54 |
|
| 55 |
|
| 56 |
if __name__ == "__main__":
|
|
|
|
| 50 |
comet_score = self.comet_model.predict([{"src":src, "mt":mt, "ref":ref}], batch_size=8, gpus=0).scores[0]
|
| 51 |
bleu_score = self.bleu_model.corpus_score([mt], [[ref]]).score
|
| 52 |
llm_acc, llm_completeness = LLM_eval.evaluate_prediction(src, ref, mt, self.LLM_model)
|
| 53 |
+
return {'bleu_score':bleu_score ,'comet_score':comet_score, 'llm_score':llm_acc[0], 'llm_explanation': llm_acc[1], 'llm_completeness':llm_completeness[0], 'llm_completeness_explanation':llm_completeness[1]}
|
| 54 |
|
| 55 |
|
| 56 |
if __name__ == "__main__":
|