|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
|
|
model_name = "mistralai/Mistral-7B-Instruct-v0.3" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
|
|
|
|
def generate_explanation(future_symbol): |
|
prompt = f"Объясните, как работает фьючерсный контракт на {future_symbol} и какие факторы влияют на его цену." |
|
|
|
|
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model.generate(**inputs, max_length=200) |
|
|
|
|
|
explanation = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return explanation |
|
|
|
|
|
future_symbols = [ |
|
"BNBUSDT", "BTCUSDT", "ETHUSDT", "SOLUSDT", |
|
"DOGEUSDT", "ADAUSDT", "LTCUSDT", "ARKMUSDT", |
|
"ORDIUSDT", "AVAXUSDT", "TONUSDT", "MANAUSDT", |
|
"SUIUSDT", "NEIROUSDT", "EOSUSDT", "DOGSUSDT", |
|
"WLDUSDT", "TRXUSDT", "ZKUSDT", "EIGENUSDT" |
|
] |
|
|
|
for symbol in future_symbols: |
|
explanation = generate_explanation(symbol) |
|
print(f"Фьючерсный контракт на {symbol}:\n{explanation}\n") |
|
|