Update app.py
Browse files
app.py
CHANGED
|
@@ -11,6 +11,7 @@ import os
|
|
| 11 |
|
| 12 |
from diffusers import StableDiffusionXLPipeline, StableDiffusion3Pipeline, SD3Transformer2DModel, FlashFlowMatchEulerDiscreteScheduler
|
| 13 |
from huggingface_hub import snapshot_download
|
|
|
|
| 14 |
from peft import PeftModel
|
| 15 |
from PIL import Image
|
| 16 |
|
|
@@ -40,6 +41,8 @@ footer {
|
|
| 40 |
}
|
| 41 |
'''
|
| 42 |
|
|
|
|
|
|
|
| 43 |
repo_default = StableDiffusionXLPipeline.from_pretrained("fluently/Fluently-XL-Final", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False)
|
| 44 |
repo_default.load_lora_weights("ehristoforu/dalle-3-xl-v2", adapter_name="base")
|
| 45 |
repo_default.set_adapters(["base"], adapter_weights=[0.7])
|
|
@@ -76,17 +79,9 @@ def get_seed(seed):
|
|
| 76 |
else:
|
| 77 |
return random.randint(0, MAX_SEED)
|
| 78 |
|
| 79 |
-
def api_classification_request(url, filename, headers):
|
| 80 |
-
with open(filename, "rb") as file:
|
| 81 |
-
data = file.read()
|
| 82 |
-
response = requests.request("POST", url, headers=headers or {}, data=data)
|
| 83 |
-
return json.loads(response.content.decode("utf-8"))
|
| 84 |
-
|
| 85 |
@spaces.GPU(duration=60)
|
| 86 |
def generate(input=DEFAULT_INPUT, filter_input="", negative_input=DEFAULT_NEGATIVE_INPUT, model=DEFAULT_MODEL, height=DEFAULT_HEIGHT, width=DEFAULT_WIDTH, steps=1, guidance=0, number=1, seed=None):
|
| 87 |
|
| 88 |
-
threading.Thread(target=api_classification_request, args=("https://api-inference.huggingface.co/models/Falconsai/nsfw_image_detection", "./Image.png", headers))
|
| 89 |
-
|
| 90 |
repo = repo_customs[model or "Default"]
|
| 91 |
filter_input = filter_input or ""
|
| 92 |
negative_input = negative_input or DEFAULT_NEGATIVE_INPUT
|
|
@@ -138,7 +133,7 @@ def generate(input=DEFAULT_INPUT, filter_input="", negative_input=DEFAULT_NEGATI
|
|
| 138 |
|
| 139 |
print(image_paths)
|
| 140 |
|
| 141 |
-
nsfw_prediction =
|
| 142 |
|
| 143 |
print(nsfw_prediction)
|
| 144 |
|
|
|
|
| 11 |
|
| 12 |
from diffusers import StableDiffusionXLPipeline, StableDiffusion3Pipeline, SD3Transformer2DModel, FlashFlowMatchEulerDiscreteScheduler
|
| 13 |
from huggingface_hub import snapshot_download
|
| 14 |
+
from transformers import pipeline
|
| 15 |
from peft import PeftModel
|
| 16 |
from PIL import Image
|
| 17 |
|
|
|
|
| 41 |
}
|
| 42 |
'''
|
| 43 |
|
| 44 |
+
nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection")
|
| 45 |
+
|
| 46 |
repo_default = StableDiffusionXLPipeline.from_pretrained("fluently/Fluently-XL-Final", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False)
|
| 47 |
repo_default.load_lora_weights("ehristoforu/dalle-3-xl-v2", adapter_name="base")
|
| 48 |
repo_default.set_adapters(["base"], adapter_weights=[0.7])
|
|
|
|
| 79 |
else:
|
| 80 |
return random.randint(0, MAX_SEED)
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
@spaces.GPU(duration=60)
|
| 83 |
def generate(input=DEFAULT_INPUT, filter_input="", negative_input=DEFAULT_NEGATIVE_INPUT, model=DEFAULT_MODEL, height=DEFAULT_HEIGHT, width=DEFAULT_WIDTH, steps=1, guidance=0, number=1, seed=None):
|
| 84 |
|
|
|
|
|
|
|
| 85 |
repo = repo_customs[model or "Default"]
|
| 86 |
filter_input = filter_input or ""
|
| 87 |
negative_input = negative_input or DEFAULT_NEGATIVE_INPUT
|
|
|
|
| 133 |
|
| 134 |
print(image_paths)
|
| 135 |
|
| 136 |
+
nsfw_prediction = nsfw_classifier(image_paths[0])
|
| 137 |
|
| 138 |
print(nsfw_prediction)
|
| 139 |
|