Update app.py
Browse files
app.py
CHANGED
|
@@ -7,7 +7,6 @@ import uuid
|
|
| 7 |
import os
|
| 8 |
|
| 9 |
from diffusers import StableDiffusionXLPipeline, StableDiffusion3Pipeline
|
| 10 |
-
from transformers import AutoModelForImageClassification, ViTImageProcessor
|
| 11 |
from PIL import Image
|
| 12 |
|
| 13 |
# Pre-Initialize
|
|
@@ -17,6 +16,8 @@ if DEVICE == "auto":
|
|
| 17 |
print(f"[SYSTEM] | Using {DEVICE} type compute device.")
|
| 18 |
|
| 19 |
# Variables
|
|
|
|
|
|
|
| 20 |
MAX_SEED = 9007199254740991
|
| 21 |
DEFAULT_INPUT = ""
|
| 22 |
DEFAULT_NEGATIVE_INPUT = "(bad, ugly, amputation, abstract, blur, blurry, deformed, distorted, disfigured, disconnected, mutation, mutated, low quality, lowres), unfinished, title, text, signature, watermark, (limbs, legs, feet, arms, hands), (porn, nude, naked, nsfw)"
|
|
@@ -24,6 +25,8 @@ DEFAULT_MODEL = "Default"
|
|
| 24 |
DEFAULT_HEIGHT = 1024
|
| 25 |
DEFAULT_WIDTH = 1024
|
| 26 |
|
|
|
|
|
|
|
| 27 |
css = '''
|
| 28 |
.gradio-container{max-width: 560px !important}
|
| 29 |
h1{text-align:center}
|
|
@@ -32,9 +35,6 @@ footer {
|
|
| 32 |
}
|
| 33 |
'''
|
| 34 |
|
| 35 |
-
repo_nsfw_classifier = AutoModelForImageClassification.from_pretrained("Falconsai/nsfw_image_detection")
|
| 36 |
-
processor_nsfw_classifier = ViTImageProcessor.from_pretrained("Falconsai/nsfw_image_detection")
|
| 37 |
-
|
| 38 |
repo_default = StableDiffusionXLPipeline.from_pretrained("fluently/Fluently-XL-Final", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False)
|
| 39 |
#repo_default.load_lora_weights("ehristoforu/dalle-3-xl-v2", adapter_name="base")
|
| 40 |
#repo_default.set_adapters(["base"], adapter_weights=[0.7])
|
|
@@ -65,6 +65,12 @@ def get_seed(seed):
|
|
| 65 |
else:
|
| 66 |
return random.randint(0, MAX_SEED)
|
| 67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
@spaces.GPU(duration=60)
|
| 69 |
def generate(input=DEFAULT_INPUT, filter_input="", negative_input=DEFAULT_NEGATIVE_INPUT, model=DEFAULT_MODEL, height=DEFAULT_HEIGHT, width=DEFAULT_WIDTH, steps=1, guidance=0, number=1, seed=None):
|
| 70 |
|
|
@@ -100,7 +106,6 @@ def generate(input=DEFAULT_INPUT, filter_input="", negative_input=DEFAULT_NEGATI
|
|
| 100 |
|
| 101 |
print(steps, guidance)
|
| 102 |
|
| 103 |
-
repo_nsfw_classifier.to(DEVICE)
|
| 104 |
repo.to(DEVICE)
|
| 105 |
|
| 106 |
parameters = {
|
|
@@ -120,11 +125,9 @@ def generate(input=DEFAULT_INPUT, filter_input="", negative_input=DEFAULT_NEGATI
|
|
| 120 |
|
| 121 |
print(image_paths)
|
| 122 |
|
| 123 |
-
nsfw_prediction =
|
| 124 |
|
| 125 |
-
print(nsfw_prediction
|
| 126 |
-
print(nsfw_prediction.argmax(-1).item())
|
| 127 |
-
print(repo_nsfw_classifier.config.id2label[nsfw_prediction])
|
| 128 |
|
| 129 |
return image_paths, {item['label']: round(item['score'], 3) for item in nsfw_prediction}
|
| 130 |
|
|
|
|
| 7 |
import os
|
| 8 |
|
| 9 |
from diffusers import StableDiffusionXLPipeline, StableDiffusion3Pipeline
|
|
|
|
| 10 |
from PIL import Image
|
| 11 |
|
| 12 |
# Pre-Initialize
|
|
|
|
| 16 |
print(f"[SYSTEM] | Using {DEVICE} type compute device.")
|
| 17 |
|
| 18 |
# Variables
|
| 19 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 20 |
+
|
| 21 |
MAX_SEED = 9007199254740991
|
| 22 |
DEFAULT_INPUT = ""
|
| 23 |
DEFAULT_NEGATIVE_INPUT = "(bad, ugly, amputation, abstract, blur, blurry, deformed, distorted, disfigured, disconnected, mutation, mutated, low quality, lowres), unfinished, title, text, signature, watermark, (limbs, legs, feet, arms, hands), (porn, nude, naked, nsfw)"
|
|
|
|
| 25 |
DEFAULT_HEIGHT = 1024
|
| 26 |
DEFAULT_WIDTH = 1024
|
| 27 |
|
| 28 |
+
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {HF_TOKEN}" }
|
| 29 |
+
|
| 30 |
css = '''
|
| 31 |
.gradio-container{max-width: 560px !important}
|
| 32 |
h1{text-align:center}
|
|
|
|
| 35 |
}
|
| 36 |
'''
|
| 37 |
|
|
|
|
|
|
|
|
|
|
| 38 |
repo_default = StableDiffusionXLPipeline.from_pretrained("fluently/Fluently-XL-Final", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False)
|
| 39 |
#repo_default.load_lora_weights("ehristoforu/dalle-3-xl-v2", adapter_name="base")
|
| 40 |
#repo_default.set_adapters(["base"], adapter_weights=[0.7])
|
|
|
|
| 65 |
else:
|
| 66 |
return random.randint(0, MAX_SEED)
|
| 67 |
|
| 68 |
+
def api_classification_request(url, filename, headers):
|
| 69 |
+
with open(filename, "rb") as file:
|
| 70 |
+
data = file.read()
|
| 71 |
+
response = requests.request("POST", url, headers=headers or {}, data=data)
|
| 72 |
+
return json.loads(response.content.decode("utf-8"))
|
| 73 |
+
|
| 74 |
@spaces.GPU(duration=60)
|
| 75 |
def generate(input=DEFAULT_INPUT, filter_input="", negative_input=DEFAULT_NEGATIVE_INPUT, model=DEFAULT_MODEL, height=DEFAULT_HEIGHT, width=DEFAULT_WIDTH, steps=1, guidance=0, number=1, seed=None):
|
| 76 |
|
|
|
|
| 106 |
|
| 107 |
print(steps, guidance)
|
| 108 |
|
|
|
|
| 109 |
repo.to(DEVICE)
|
| 110 |
|
| 111 |
parameters = {
|
|
|
|
| 125 |
|
| 126 |
print(image_paths)
|
| 127 |
|
| 128 |
+
nsfw_prediction = api_classification_request("https://api-inference.huggingface.co/models/Falconsai/nsfw_image_detection", image_paths[0], headers)
|
| 129 |
|
| 130 |
+
print(nsfw_prediction)
|
|
|
|
|
|
|
| 131 |
|
| 132 |
return image_paths, {item['label']: round(item['score'], 3) for item in nsfw_prediction}
|
| 133 |
|