File size: 6,592 Bytes
fef0a8d
99eb93c
fef0a8d
 
4cab0f7
38e087a
8fa5734
294c109
38e087a
7820541
45099c6
c750982
542f90d
fef0a8d
294c109
fef0a8d
 
 
 
 
f8a64f8
45099c6
24f9533
5268082
e52a62d
0629ecb
4bd5128
294c109
 
4bd5128
96f2f76
 
 
 
 
 
 
 
3e7bef2
c81c545
7820541
c81c545
 
 
 
7820541
 
4cab0f7
 
7820541
4cab0f7
 
 
 
957abbb
89f7ce7
bcbc1e7
 
 
 
 
 
 
 
 
 
 
 
 
 
38e087a
3e7bef2
 
 
 
 
38e087a
bcbc1e7
38e087a
bcbc1e7
 
 
 
 
c81c545
3e7bef2
 
c81c545
3e7bef2
 
 
 
 
957abbb
3e7bef2
 
 
 
957abbb
bcbc1e7
3e7bef2
 
c81c545
bcbc1e7
c81c545
bcbc1e7
c81c545
957abbb
 
bcbc1e7
c81c545
bcbc1e7
c81c545
bcbc1e7
c81c545
bcbc1e7
c81c545
bcbc1e7
 
 
 
 
 
 
 
c81c545
 
b5f3a95
bcbc1e7
c81c545
 
957abbb
 
 
bcbc1e7
 
 
 
5268082
c81c545
3e7bef2
 
c81c545
 
 
957abbb
 
 
 
 
 
 
 
 
 
 
 
bcbc1e7
c81c545
957abbb
 
c81c545
5268082
294c109
5268082
 
 
46010b5
 
 
4cab0f7
5268082
 
eb3d2f3
5268082
 
eb3d2f3
5268082
 
 
5a25e75
5268082
 
 
5a25e75
5268082
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# Imports
import gradio as gr
import spaces
import torch
import os
import math
import gc
import librosa
import tempfile
from PIL import Image, ImageSequence
from decord import VideoReader, cpu
from moviepy.editor import VideoFileClip
from transformers import AutoModel, AutoTokenizer, AutoProcessor

# Variables
DEVICE = "auto"
if DEVICE == "auto":
    DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"[SYSTEM] | Using {DEVICE} type compute device.")

DEFAULT_INPUT = "Describe in one short sentence."
MAX_FRAMES = 64
AUDIO_SR = 16000

model_name = "openbmb/MiniCPM-o-2_6"

repo = AutoModel.from_pretrained(model_name, trust_remote_code=True, attn_implementation="sdpa", torch_dtype=torch.bfloat16).to(DEVICE)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)

css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''

global_instruction = "You will analyze video, audio and text input and output your description of the given content with as much keywords and always take a guess."

input_prefixes = {
    "Image": "A image file called β–ˆ has been attached, describe the image content.",
    "GIF": "A GIF file called β–ˆ has been attached, describe the GIF content.",
    "Video": "A audio video file called β–ˆ has been attached, describe the video content and the audio content.",
    "Audio": "A audio file called β–ˆ has been attached, describe the audio content.",
}

filetypes = {
    "Image": [".jpg", ".jpeg", ".png", ".bmp"],
    "GIF": [".gif"],
    "Video": [".mp4", ".mov", ".avi", ".mkv"],
    "Audio": [".wav", ".mp3", ".flac", ".aac"],
}

# Functions
def infer_filetype(ext):
    return next((k for k, v in filetypes.items() if ext in v), None)

def uniform_sample(seq, n):
    step = max(len(seq) // n, 1)
    return seq[::step][:n]

def frames_from_video(path):
    vr = VideoReader(path, ctx = cpu(0))
    idx = uniform_sample(range(len(vr)), MAX_FRAMES)
    batch = vr.get_batch(idx).asnumpy()
    return [Image.fromarray(frame.astype("uint8")) for frame in batch]

def audio_from_video(path):
    clip = VideoFileClip(path)
    with tempfile.NamedTemporaryFile(suffix = ".wav", delete = True) as tmp:
        clip.audio.write_audiofile(tmp.name,
                                   codec = "pcm_s16le",
                                   fps   = AUDIO_SR,
                                   verbose = False,
                                   logger  = None)
        audio_np, _ = librosa.load(tmp.name, sr = AUDIO_SR, mono = True)
    clip.close()
    return audio_np

def load_audio(path):
    audio_np, _ = librosa.load(path, sr = AUDIO_SR, mono = True)
    return audio_np

def build_video_omni(path, instruction):
    frames = frames_from_video(path)
    audio  = audio_from_video(path)
    contents = [instruction]

    audio_secs  = math.ceil(len(audio) / AUDIO_SR)
    total_units = max(1, min(len(frames), audio_secs))

    for i in range(total_units):
        frame = frames[i] if i < len(frames) else frames[-1]
        start = i * AUDIO_SR
        end   = min((i + 1) * AUDIO_SR, len(audio))
        chunk = audio[start:end]
        if chunk.size == 0: break
        contents.extend(["<unit>", frame, chunk])

    return contents
    
def build_image_omni(path, instruction):
    image = Image.open(path).convert("RGB")
    return [instruction, image]

def build_gif_omni(path, instruction):
    img = Image.open(path)
    frames = [f.copy().convert("RGB") for f in ImageSequence.Iterator(img)]
    frames = uniform_sample(frames, MAX_FRAMES)
    return [instruction, *frames]

def build_audio_omni(path, instruction):
    audio = load_audio(path)
    return [instruction, audio]

@spaces.GPU(duration=30)
def generate(input,
             instruction        = DEFAULT_INPUT,
             sampling           = False,
             temperature        = 0.7,
             top_p              = 0.8,
             top_k              = 100,
             repetition_penalty = 1.05,
             max_tokens         = 512):
    if not input: return "no input provided."
        
    extension = os.path.splitext(input)[1].lower()
    filetype  = infer_filetype(extension)
    if not filetype: return "unsupported file type."
        
    filename     = os.path.basename(input)
    prefix       = input_prefixes[filetype].replace("β–ˆ", filename)
    builder_map  = {
        "Image": build_image_omni,
        "GIF"  : build_gif_omni,
        "Video": build_video_omni,
        "Audio": build_audio_omni
    }

    instruction = f"{prefix}\n{instruction}"
    msgs         = [{ "role": "user", "content": global_instruction }, { "role": "user", "content": omni_content }]
    
    print(msgs)
    
    output       = repo.chat(
        msgs               = msgs,
        tokenizer          = tokenizer,
        sampling           = sampling,
        temperature        = temperature,
        top_p              = top_p,
        top_k              = top_k,
        repetition_penalty = repetition_penalty,
        max_new_tokens     = max_tokens,
        omni_input         = True,
        use_image_id       = False,
        max_slice_nums     = 2
    )
    
    torch.cuda.empty_cache()
    gc.collect()
    
    return output

def cloud():
    print("[CLOUD] | Space maintained.")

# Initialize
with gr.Blocks(css=css) as main:
    with gr.Column():
        input = gr.File(label="Input", file_types=["image", "video", "audio"], type="filepath")
        instruction = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Instruction")
        sampling = gr.Checkbox(value=False, label="Sampling")
        temperature = gr.Slider(minimum=0.01, maximum=1.99, step=0.01, value=0.7, label="Temperature")
        top_p = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.8, label="Top P")
        top_k = gr.Slider(minimum=0, maximum=1000, step=1, value=100, label="Top K")
        repetition_penalty = gr.Slider(minimum=0.01, maximum=1.99, step=0.01, value=1.05, label="Repetition Penalty")
        max_tokens = gr.Slider(minimum=1, maximum=4096, step=1, value=512, label="Max Tokens")
        submit = gr.Button("β–Ά")
        maintain = gr.Button("☁️")

    with gr.Column():
        output = gr.Textbox(lines=1, value="", label="Output")

    submit.click(fn=generate, inputs=[input, instruction, sampling, temperature, top_p, top_k, repetition_penalty, max_tokens], outputs=[output], queue=False)
    maintain.click(cloud, inputs=[], outputs=[], queue=False)

main.launch(show_api=True)