Spaces:
Running
Running
File size: 6,592 Bytes
fef0a8d 99eb93c fef0a8d 4cab0f7 38e087a 8fa5734 294c109 38e087a 7820541 45099c6 c750982 542f90d fef0a8d 294c109 fef0a8d f8a64f8 45099c6 24f9533 5268082 e52a62d 0629ecb 4bd5128 294c109 4bd5128 96f2f76 3e7bef2 c81c545 7820541 c81c545 7820541 4cab0f7 7820541 4cab0f7 957abbb 89f7ce7 bcbc1e7 38e087a 3e7bef2 38e087a bcbc1e7 38e087a bcbc1e7 c81c545 3e7bef2 c81c545 3e7bef2 957abbb 3e7bef2 957abbb bcbc1e7 3e7bef2 c81c545 bcbc1e7 c81c545 bcbc1e7 c81c545 957abbb bcbc1e7 c81c545 bcbc1e7 c81c545 bcbc1e7 c81c545 bcbc1e7 c81c545 bcbc1e7 c81c545 b5f3a95 bcbc1e7 c81c545 957abbb bcbc1e7 5268082 c81c545 3e7bef2 c81c545 957abbb bcbc1e7 c81c545 957abbb c81c545 5268082 294c109 5268082 46010b5 4cab0f7 5268082 eb3d2f3 5268082 eb3d2f3 5268082 5a25e75 5268082 5a25e75 5268082 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
# Imports
import gradio as gr
import spaces
import torch
import os
import math
import gc
import librosa
import tempfile
from PIL import Image, ImageSequence
from decord import VideoReader, cpu
from moviepy.editor import VideoFileClip
from transformers import AutoModel, AutoTokenizer, AutoProcessor
# Variables
DEVICE = "auto"
if DEVICE == "auto":
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"[SYSTEM] | Using {DEVICE} type compute device.")
DEFAULT_INPUT = "Describe in one short sentence."
MAX_FRAMES = 64
AUDIO_SR = 16000
model_name = "openbmb/MiniCPM-o-2_6"
repo = AutoModel.from_pretrained(model_name, trust_remote_code=True, attn_implementation="sdpa", torch_dtype=torch.bfloat16).to(DEVICE)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
global_instruction = "You will analyze video, audio and text input and output your description of the given content with as much keywords and always take a guess."
input_prefixes = {
"Image": "A image file called β has been attached, describe the image content.",
"GIF": "A GIF file called β has been attached, describe the GIF content.",
"Video": "A audio video file called β has been attached, describe the video content and the audio content.",
"Audio": "A audio file called β has been attached, describe the audio content.",
}
filetypes = {
"Image": [".jpg", ".jpeg", ".png", ".bmp"],
"GIF": [".gif"],
"Video": [".mp4", ".mov", ".avi", ".mkv"],
"Audio": [".wav", ".mp3", ".flac", ".aac"],
}
# Functions
def infer_filetype(ext):
return next((k for k, v in filetypes.items() if ext in v), None)
def uniform_sample(seq, n):
step = max(len(seq) // n, 1)
return seq[::step][:n]
def frames_from_video(path):
vr = VideoReader(path, ctx = cpu(0))
idx = uniform_sample(range(len(vr)), MAX_FRAMES)
batch = vr.get_batch(idx).asnumpy()
return [Image.fromarray(frame.astype("uint8")) for frame in batch]
def audio_from_video(path):
clip = VideoFileClip(path)
with tempfile.NamedTemporaryFile(suffix = ".wav", delete = True) as tmp:
clip.audio.write_audiofile(tmp.name,
codec = "pcm_s16le",
fps = AUDIO_SR,
verbose = False,
logger = None)
audio_np, _ = librosa.load(tmp.name, sr = AUDIO_SR, mono = True)
clip.close()
return audio_np
def load_audio(path):
audio_np, _ = librosa.load(path, sr = AUDIO_SR, mono = True)
return audio_np
def build_video_omni(path, instruction):
frames = frames_from_video(path)
audio = audio_from_video(path)
contents = [instruction]
audio_secs = math.ceil(len(audio) / AUDIO_SR)
total_units = max(1, min(len(frames), audio_secs))
for i in range(total_units):
frame = frames[i] if i < len(frames) else frames[-1]
start = i * AUDIO_SR
end = min((i + 1) * AUDIO_SR, len(audio))
chunk = audio[start:end]
if chunk.size == 0: break
contents.extend(["<unit>", frame, chunk])
return contents
def build_image_omni(path, instruction):
image = Image.open(path).convert("RGB")
return [instruction, image]
def build_gif_omni(path, instruction):
img = Image.open(path)
frames = [f.copy().convert("RGB") for f in ImageSequence.Iterator(img)]
frames = uniform_sample(frames, MAX_FRAMES)
return [instruction, *frames]
def build_audio_omni(path, instruction):
audio = load_audio(path)
return [instruction, audio]
@spaces.GPU(duration=30)
def generate(input,
instruction = DEFAULT_INPUT,
sampling = False,
temperature = 0.7,
top_p = 0.8,
top_k = 100,
repetition_penalty = 1.05,
max_tokens = 512):
if not input: return "no input provided."
extension = os.path.splitext(input)[1].lower()
filetype = infer_filetype(extension)
if not filetype: return "unsupported file type."
filename = os.path.basename(input)
prefix = input_prefixes[filetype].replace("β", filename)
builder_map = {
"Image": build_image_omni,
"GIF" : build_gif_omni,
"Video": build_video_omni,
"Audio": build_audio_omni
}
instruction = f"{prefix}\n{instruction}"
msgs = [{ "role": "user", "content": global_instruction }, { "role": "user", "content": omni_content }]
print(msgs)
output = repo.chat(
msgs = msgs,
tokenizer = tokenizer,
sampling = sampling,
temperature = temperature,
top_p = top_p,
top_k = top_k,
repetition_penalty = repetition_penalty,
max_new_tokens = max_tokens,
omni_input = True,
use_image_id = False,
max_slice_nums = 2
)
torch.cuda.empty_cache()
gc.collect()
return output
def cloud():
print("[CLOUD] | Space maintained.")
# Initialize
with gr.Blocks(css=css) as main:
with gr.Column():
input = gr.File(label="Input", file_types=["image", "video", "audio"], type="filepath")
instruction = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Instruction")
sampling = gr.Checkbox(value=False, label="Sampling")
temperature = gr.Slider(minimum=0.01, maximum=1.99, step=0.01, value=0.7, label="Temperature")
top_p = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.8, label="Top P")
top_k = gr.Slider(minimum=0, maximum=1000, step=1, value=100, label="Top K")
repetition_penalty = gr.Slider(minimum=0.01, maximum=1.99, step=0.01, value=1.05, label="Repetition Penalty")
max_tokens = gr.Slider(minimum=1, maximum=4096, step=1, value=512, label="Max Tokens")
submit = gr.Button("βΆ")
maintain = gr.Button("βοΈ")
with gr.Column():
output = gr.Textbox(lines=1, value="", label="Output")
submit.click(fn=generate, inputs=[input, instruction, sampling, temperature, top_p, top_k, repetition_penalty, max_tokens], outputs=[output], queue=False)
maintain.click(cloud, inputs=[], outputs=[], queue=False)
main.launch(show_api=True) |