Spaces:
Running
Running
# Imports | |
import gradio as gr | |
import spaces | |
import torch | |
import os | |
import math | |
import tempfile | |
import librosa | |
from PIL import Image, ImageSequence | |
from decord import VideoReader, cpu | |
from moviepy.editor import VideoFileClip | |
from transformers import AutoModel, AutoTokenizer, AutoProcessor | |
# Variables | |
DEVICE = "auto" | |
if DEVICE == "auto": | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"[SYSTEM] | Using {DEVICE} type compute device.") | |
DEFAULT_INPUT = "Describe in one short sentence." | |
MAX_FRAMES = 64 | |
model_name = "openbmb/MiniCPM-o-2_6" | |
repo = AutoModel.from_pretrained(model_name, trust_remote_code=True, attn_implementation="sdpa", torch_dtype=torch.bfloat16).to(DEVICE) | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True) | |
css = ''' | |
.gradio-container{max-width: 560px !important} | |
h1{text-align:center} | |
footer { | |
visibility: hidden | |
} | |
''' | |
input_prefixes = { | |
"Image": "(A image file called β has been attached, describe the image content) ", | |
"GIF": "(A GIF file called β has been attached, describe the GIF content) ", | |
"Video": "(A video with audio file called β has been attached, describe the video content and the audio content embedded into the video) ", | |
"Audio": "(A audio file called β has been attached, describe the audio content) ", | |
} | |
filetypes = { | |
"Image": [".jpg", ".jpeg", ".png", ".bmp"], | |
"GIF": [".gif"], | |
"Video": [".mp4", ".mov", ".avi", ".mkv"], | |
"Audio": [".wav", ".mp3", ".flac", ".aac"], | |
} | |
def uniform_sample(idxs, n): | |
gap = len(idxs) / n | |
return [idxs[int(i * gap + gap / 2)] for i in range(n)] | |
def build_omni_chunks(path, prefix, instruction, sr=AUDIO_SR, seconds_per_unit=1): | |
clip = VideoFileClip(path, audio_fps=sr) | |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp: | |
clip.audio.write_audiofile(tmp.name, fps=sr, codec="pcm_s16le", verbose=False, logger=None) | |
audio_np, _ = librosa.load(tmp.name, sr=sr, mono=True) | |
total_units = math.ceil(clip.duration / seconds_per_unit) | |
content = [] | |
for i in range(total_units): | |
t = min(i * seconds_per_unit, clip.duration - 1e-3) | |
frame = Image.fromarray(clip.get_frame(t).astype("uint8")).convert("RGB") | |
audio_chunk = audio_np[sr * i * seconds_per_unit : sr * (i + 1) * seconds_per_unit] | |
content.extend(["<unit>", frame, audio_chunk]) | |
clip.close() | |
os.remove(tmp.name) | |
content.append(prefix + instruction) | |
return content | |
def build_image_omni(path, prefix, instruction): | |
image = Image.open(path).convert("RGB") | |
return ["<unit>", image, prefix + instruction] | |
def encode_gif(path): | |
img = Image.open(path) | |
frames = [frame.copy().convert("RGB") for frame in ImageSequence.Iterator(img)] | |
if len(frames) > MAX_FRAMES: | |
frames = uniform_sample(frames, MAX_FRAMES) | |
return frames | |
def build_gif_omni(path, prefix, instruction): | |
frames = encode_gif(path) | |
content = [] | |
for f in frames: | |
content.extend(["<unit>", f]) | |
content.append(prefix + instruction) | |
return content | |
def build_audio_omni(path, prefix, instruction, sr=AUDIO_SR): | |
audio_np, _ = librosa.load(path, sr=sr, mono=True) | |
return ["<unit>", audio_np, prefix + instruction] | |
def generate(input, instruction=DEFAULT_INPUT, sampling=False, temperature=0.7, top_p=0.8, top_k=100, repetition_penalty=1.05, max_tokens=512): | |
if not input: return "No input provided." | |
extension = os.path.splitext(input)[1].lower() | |
filetype = next((k for k, v in filetypes.items() if extension in v), None) | |
if not filetype: return "Unsupported file type." | |
filename = os.path.basename(input) | |
prefix = input_prefixes[filetype].replace("β", filename) | |
if filetype == "Video": | |
omni_content = build_omni_chunks(input, prefix, instruction) | |
elif filetype == "Image": | |
omni_content = build_image_omni(input, prefix, instruction) | |
elif filetype == "GIF": | |
omni_content = build_gif_omni(input, prefix, instruction) | |
elif filetype == "Audio": | |
omni_content = build_audio_omni(input, prefix, instruction) | |
sys_msg = repo.get_sys_prompt(mode="omni", language="en") | |
msgs = [sys_msg, {"role": "user", "content": omni_content}] | |
params = { | |
"msgs": msgs, | |
"tokenizer": tokenizer, | |
"sampling": sampling, | |
"temperature": temperature, | |
"top_p": top_p, | |
"top_k": top_k, | |
"repetition_penalty": repetition_penalty, | |
"max_new_tokens": max_tokens, | |
"omni_input": True, | |
} | |
output = repo.chat(**params) | |
torch.cuda.empty_cache() | |
gc.collect() | |
return output | |
def cloud(): | |
print("[CLOUD] | Space maintained.") | |
# Initialize | |
with gr.Blocks(css=css) as main: | |
with gr.Column(): | |
input = gr.File(label="Input", file_types=["image", "video", "audio"], type="filepath") | |
instruction = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Instruction") | |
sampling = gr.Checkbox(value=False, label="Sampling") | |
temperature = gr.Slider(minimum=0.01, maximum=1.99, step=0.01, value=0.7, label="Temperature") | |
top_p = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.8, label="Top P") | |
top_k = gr.Slider(minimum=0, maximum=1000, step=1, value=100, label="Top K") | |
repetition_penalty = gr.Slider(minimum=0.01, maximum=1.99, step=0.01, value=1.05, label="Repetition Penalty") | |
max_tokens = gr.Slider(minimum=1, maximum=4096, step=1, value=512, label="Max Tokens") | |
submit = gr.Button("βΆ") | |
maintain = gr.Button("βοΈ") | |
with gr.Column(): | |
output = gr.Textbox(lines=1, value="", label="Output") | |
submit.click(fn=generate, inputs=[input, instruction, sampling, temperature, top_p, top_k, repetition_penalty, max_tokens], outputs=[output], queue=False) | |
maintain.click(cloud, inputs=[], outputs=[], queue=False) | |
main.launch(show_api=True) |