Spaces:
Running
Running
# Imports | |
import gradio as gr | |
import spaces | |
import torch | |
from transformers import pipeline | |
# Pre-Initialize | |
DEVICE = "auto" | |
if DEVICE == "auto": | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"[SYSTEM] | Using {DEVICE} type compute device.") | |
# Variables | |
BATCH_SIZE = 8 | |
pipe = pipeline(task="automatic-speech-recognition", model="openai/whisper-large-v3-turbo", chunk_length_s=30, device=device) | |
def transcribe(inputs, task): | |
if inputs is None: raise gr.Error("Invalid input.") | |
output = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] | |
return output | |
def cloud(): | |
print("[CLOUD] | Space maintained.") | |
# Initialize | |
with gr.Blocks(css=css) as main: | |
with gr.Column(): | |
gr.Markdown("🪄 Transcribe audio to text.") | |
with gr.Column(): | |
input = gr.Audio(sources="upload", type="filepath", label="Input"), | |
type = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), | |
submit = gr.Button("▶") | |
maintain = gr.Button("☁️") | |
with gr.Column(): | |
output = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Output") | |
submit.click(transcribe, inputs=[input, type], outputs=[output], queue=False) | |
maintain.click(cloud, inputs=[], outputs=[], queue=False) | |
main.launch(show_api=True) |