Transcribe / app.py
Staticaliza's picture
Update app.py
3ef3d4d verified
raw
history blame
1.63 kB
# Imports
import gradio as gr
import spaces
import torch
from transformers import pipeline
# Pre-Initialize
DEVICE = -1 # -1 indicates CPU for transformers pipeline
print("[SYSTEM] | Using CPU type compute device.")
# Variables
DEFAULT_TASK = "transcribe"
BATCH_SIZE = 8
repo = pipeline(task="automatic-speech-recognition", model="openai/whisper-large-v3-turbo", chunk_length_s=30, device=DEVICE # Ensures CPU usage)
css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
# Functions
def transcribe(input=None, task=DEFAULT_TASK):
print(input)
if input is None:
raise gr.Error("Invalid input.")
output = repo(
input,
batch_size=BATCH_SIZE,
generate_kwargs={"task": task},
return_timestamps=True
)["text"]
return output
def cloud():
print("[CLOUD] | Space maintained.")
@spaces.GPU(duration=60)
def gpu():
return
# Initialize
with gr.Blocks(css=css) as main:
with gr.Column():
gr.Markdown("🪄 Transcribe audio to text.")
with gr.Column():
input = gr.Audio(sources="upload", type="filepath", label="Input")
task = gr.Radio(["transcribe", "translate"], label="Task", value=DEFAULT_TASK)
submit = gr.Button("▶")
maintain = gr.Button("☁️")
with gr.Column():
output = gr.Textbox(lines=1, value="", label="Output")
submit.click(transcribe, inputs=[input, task], outputs=[output], queue=False)
maintain.click(cloud, inputs=[], outputs=[], queue=False)
main.launch(show_api=True)