Spaces:
Paused
Paused
| # Imports | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| from transformers import pipeline | |
| # Pre-Initialize | |
| DEVICE = "auto" | |
| if DEVICE == "auto": | |
| DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
| print(f"[SYSTEM] | Using {DEVICE} type compute device.") | |
| # Variables | |
| DEFAULT_TASK = "transcribe" | |
| BATCH_SIZE = 8 | |
| repo = pipeline(task="automatic-speech-recognition", model="openai/whisper-large-v3-turbo", chunk_length_s=30, device=DEVICE) | |
| css = ''' | |
| .gradio-container{max-width: 560px !important} | |
| h1{text-align:center} | |
| footer { | |
| visibility: hidden | |
| } | |
| ''' | |
| # Functions | |
| def transcribe(input=None, task=DEFAULT_TASK): | |
| print(input) | |
| if input is None: raise gr.Error("Invalid input.") | |
| output = repo(input, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] | |
| return output | |
| def cloud(): | |
| print("[CLOUD] | Space maintained.") | |
| # Initialize | |
| with gr.Blocks(css=css) as main: | |
| with gr.Column(): | |
| gr.Markdown("🪄 Transcribe audio to text.") | |
| with gr.Column(): | |
| input = gr.Audio(sources="upload", type="filepath", label="Input") | |
| task = gr.Radio(["transcribe", "translate"], label="Task", value=DEFAULT_TASK) | |
| submit = gr.Button("▶") | |
| maintain = gr.Button("☁️") | |
| with gr.Column(): | |
| output = gr.Textbox(lines=1, value="", label="Output") | |
| submit.click(transcribe, inputs=[input, task], outputs=[output], queue=False) | |
| maintain.click(cloud, inputs=[], outputs=[], queue=False) | |
| main.launch(show_api=True) |