Staticaliza commited on
Commit
a3c1698
·
verified ·
1 Parent(s): ca08c53

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -99
app.py CHANGED
@@ -1,8 +1,8 @@
 
 
1
  import spaces
2
  import torch
3
 
4
- import gradio as gr
5
- import yt_dlp as youtube_dl
6
  from transformers import pipeline
7
  from transformers.pipelines.audio_utils import ffmpeg_read
8
 
@@ -11,17 +11,10 @@ import os
11
 
12
  MODEL_NAME = "openai/whisper-large-v3-turbo"
13
  BATCH_SIZE = 8
14
- FILE_LIMIT_MB = 1000
15
- YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
16
 
17
  device = 0 if torch.cuda.is_available() else "cpu"
18
 
19
- pipe = pipeline(
20
- task="automatic-speech-recognition",
21
- model=MODEL_NAME,
22
- chunk_length_s=30,
23
- device=device,
24
- )
25
 
26
 
27
  @spaces.GPU
@@ -33,80 +26,8 @@ def transcribe(inputs, task):
33
  return text
34
 
35
 
36
- def _return_yt_html_embed(yt_url):
37
- video_id = yt_url.split("?v=")[-1]
38
- HTML_str = (
39
- f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
40
- " </center>"
41
- )
42
- return HTML_str
43
-
44
- def download_yt_audio(yt_url, filename):
45
- info_loader = youtube_dl.YoutubeDL()
46
-
47
- try:
48
- info = info_loader.extract_info(yt_url, download=False)
49
- except youtube_dl.utils.DownloadError as err:
50
- raise gr.Error(str(err))
51
-
52
- file_length = info["duration_string"]
53
- file_h_m_s = file_length.split(":")
54
- file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
55
-
56
- if len(file_h_m_s) == 1:
57
- file_h_m_s.insert(0, 0)
58
- if len(file_h_m_s) == 2:
59
- file_h_m_s.insert(0, 0)
60
- file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
61
-
62
- if file_length_s > YT_LENGTH_LIMIT_S:
63
- yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
64
- file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
65
- raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
66
-
67
- ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
68
-
69
- with youtube_dl.YoutubeDL(ydl_opts) as ydl:
70
- try:
71
- ydl.download([yt_url])
72
- except youtube_dl.utils.ExtractorError as err:
73
- raise gr.Error(str(err))
74
-
75
- @spaces.GPU
76
- def yt_transcribe(yt_url, task, max_filesize=75.0):
77
- html_embed_str = _return_yt_html_embed(yt_url)
78
-
79
- with tempfile.TemporaryDirectory() as tmpdirname:
80
- filepath = os.path.join(tmpdirname, "video.mp4")
81
- download_yt_audio(yt_url, filepath)
82
- with open(filepath, "rb") as f:
83
- inputs = f.read()
84
-
85
- inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
86
- inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
87
-
88
- text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
89
-
90
- return html_embed_str, text
91
-
92
-
93
  demo = gr.Blocks(theme=gr.themes.Ocean())
94
 
95
- mf_transcribe = gr.Interface(
96
- fn=transcribe,
97
- inputs=[
98
- gr.Audio(sources="microphone", type="filepath"),
99
- gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
100
- ],
101
- outputs="text",
102
- title="Whisper Large V3 Turbo: Transcribe Audio",
103
- description=(
104
- "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
105
- f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
106
- " of arbitrary length."
107
- ),
108
- allow_flagging="never",
109
- )
110
 
111
  file_transcribe = gr.Interface(
112
  fn=transcribe,
@@ -124,23 +45,7 @@ file_transcribe = gr.Interface(
124
  allow_flagging="never",
125
  )
126
 
127
- yt_transcribe = gr.Interface(
128
- fn=yt_transcribe,
129
- inputs=[
130
- gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
131
- gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
132
- ],
133
- outputs=["html", "text"],
134
- title="Whisper Large V3: Transcribe YouTube",
135
- description=(
136
- "Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
137
- f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
138
- " arbitrary length."
139
- ),
140
- allow_flagging="never",
141
- )
142
-
143
  with demo:
144
- gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
145
 
146
  demo.queue().launch(ssr_mode=False)
 
1
+ # Imports
2
+ import gradio as gr
3
  import spaces
4
  import torch
5
 
 
 
6
  from transformers import pipeline
7
  from transformers.pipelines.audio_utils import ffmpeg_read
8
 
 
11
 
12
  MODEL_NAME = "openai/whisper-large-v3-turbo"
13
  BATCH_SIZE = 8
 
 
14
 
15
  device = 0 if torch.cuda.is_available() else "cpu"
16
 
17
+ pipe = pipeline(task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device,)
 
 
 
 
 
18
 
19
 
20
  @spaces.GPU
 
26
  return text
27
 
28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  demo = gr.Blocks(theme=gr.themes.Ocean())
30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
  file_transcribe = gr.Interface(
33
  fn=transcribe,
 
45
  allow_flagging="never",
46
  )
47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  with demo:
49
+ gr.TabbedInterface([file_transcribe], ["Audio file"])
50
 
51
  demo.queue().launch(ssr_mode=False)