Spaces:
Running
Running
# Imports | |
import gradio as gr | |
import spaces | |
import os | |
import torch | |
import torchaudio | |
import time | |
from zonos.model import Zonos | |
from zonos.conditioning import make_cond_dict, supported_language_codes | |
# Variables | |
HF_TOKEN = os.environ.get("HF_TOKEN", "") | |
device = "cuda" | |
REPO = "Zyphra/Zonos-v0.1-transformer" | |
model = Zonos.from_pretrained(REPO, device=device) | |
# Functions | |
def patch_cuda(): | |
if torch.cuda.is_available(): | |
for i in range(torch.cuda.device_count()): | |
p = torch.cuda.get_device_properties(i) | |
if not hasattr(p, "regs_per_multiprocessor"): | |
setattr(p, "regs_per_multiprocessor", 65536) | |
if not hasattr(p, "max_threads_per_multi_processor"): | |
setattr(p, "max_threads_per_multi_processor", 2048) | |
def generate(input, language, speaker_audio, emotion_happy, emotion_sad, emotion_disgust, emotion_fear, emotion_surprise, emotion_anger, emotion_other, emotion_neutral, clarity, fmax, pitch_std, speaking_rate, dnsmos_ovrl, cfg_scale, min_p, steps, seed, randomize_seed): | |
if randomize_seed: seed = int(time.time()) | |
torch.manual_seed(seed) | |
speaker_embedding = None | |
if speaker_audio is not None: | |
wav, sr = torchaudio.load(speaker_audio) | |
speaker_embedding = (model.make_speaker_embedding(wav, sr).to(device, dtype=torch.bfloat16)) | |
emotion_tensor = torch.tensor([emotion_happy, emotion_sad, emotion_disgust, emotion_fear, emotion_surprise, emotion_anger, emotion_other, emotion_neutral], device=device, dtype=torch.bfloat16) | |
vq_tensor = torch.tensor([clarity] * 8, device=device, dtype=torch.bfloat16).unsqueeze(0) | |
cond_dict = make_cond_dict( | |
text=input, | |
language=language, | |
speaker=speaker_embedding, | |
emotion=emotion_tensor, | |
vqscore_8=vq_tensor, | |
fmax=float(fmax), | |
pitch_std=float(pitch_std), | |
speaking_rate=float(speaking_rate), | |
dnsmos_ovrl=float(dnsmos_ovrl), | |
device=device, | |
) | |
conditioning = model.prepare_conditioning(cond_dict) | |
codes = model.generate( | |
prefix_conditioning=conditioning, | |
max_new_tokens=int(steps), | |
cfg_scale=float(cfg_scale), | |
batch_size=1, | |
sampling_params=dict(min_p=float(min_p)), | |
) | |
wav_out = model.autoencoder.decode(codes).cpu().detach() | |
sr_out = model.autoencoder.sampling_rate | |
if wav_out.dim() == 2 and wav_out.size(0) > 1: wav_out = wav_out[0:1, :] | |
return (sr_out, wav_out.squeeze().numpy()) | |
# Initialize | |
patch_cuda() | |
with gr.Blocks() as main: | |
text = gr.Textbox(label="text", value="hello, world!") | |
language = gr.Dropdown(choices=supported_language_codes, value="en-us", label="language") | |
speaker_audio = gr.Audio(label="voice reference", type="filepath") | |
clarity_slider = gr.Slider(0.5, 0.8, 0.8, 0.01, label="clarity") | |
steps_slider = gr.Slider(1, 3000, 300, 1, label="steps") | |
dnsmos_slider = gr.Slider(1.0, 5.0, 5.0, 0.1, label="quality") | |
fmax_slider = gr.Slider(0, 24000, 24000, 1, label="fmax") | |
pitch_std_slider = gr.Slider(0.0, 300.0, 30.0, 1, label="pitch std") | |
speaking_rate_slider = gr.Slider(5.0, 30.0, 15.0, 0.1, label="rate") | |
cfg_scale_slider = gr.Slider(1.0, 5.0, 2.5, 0.1, label="guidance") | |
min_p_slider = gr.Slider(0.0, 1.0, 0.05, 0.01, label="min p") | |
with gr.Row(): | |
e1 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="happy") | |
e2 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="sad") | |
e3 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="disgust") | |
e4 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="fear") | |
e5 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="surprise") | |
e6 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="anger") | |
e7 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="other") | |
e8 = gr.Slider(0.0, 1.0, 1.0, 0.01, label="neutral") | |
seed_number = gr.Number(label="seed", value=42, precision=0) | |
randomize_seed_toggle = gr.Checkbox(label="randomize seed", value=True) | |
generate_button = gr.Button("generate") | |
output_audio = gr.Audio(label="output", type="numpy", autoplay=True) | |
generate_button.click(fn=generate, inputs=[text, language, speaker_audio, e1, e2, e3, e4, e5, e6, e7, e8, clarity_slider, fmax_slider, pitch_std_slider, speaking_rate_slider, dnsmos_slider, cfg_scale_slider, min_p_slider, steps_slider, seed_number, randomize_seed_toggle], outputs=output_audio) | |
main.launch() |