Zero-5 / app.py
Staticaliza's picture
Update app.py
390c99c verified
raw
history blame
4.42 kB
# Imports
import gradio as gr
import spaces
import os
import torch
import torchaudio
import time
from zonos.model import Zonos
from zonos.conditioning import make_cond_dict, supported_language_codes
# Variables
HF_TOKEN = os.environ.get("HF_TOKEN", "")
device = "cuda"
REPO = "Zyphra/Zonos-v0.1-transformer"
model = Zonos.from_pretrained(REPO, device=device)
# Functions
def patch_cuda():
if torch.cuda.is_available():
for i in range(torch.cuda.device_count()):
p = torch.cuda.get_device_properties(i)
if not hasattr(p, "regs_per_multiprocessor"):
setattr(p, "regs_per_multiprocessor", 65536)
if not hasattr(p, "max_threads_per_multi_processor"):
setattr(p, "max_threads_per_multi_processor", 2048)
@spaces.GPU
def generate(input, language, speaker_audio, emotion_happy, emotion_sad, emotion_disgust, emotion_fear, emotion_surprise, emotion_anger, emotion_other, emotion_neutral, clarity, fmax, pitch_std, speaking_rate, dnsmos_ovrl, cfg_scale, min_p, steps, seed, randomize_seed):
if randomize_seed: seed = int(time.time())
torch.manual_seed(seed)
speaker_embedding = None
if speaker_audio is not None:
wav, sr = torchaudio.load(speaker_audio)
speaker_embedding = (model.make_speaker_embedding(wav, sr).to(device, dtype=torch.bfloat16))
emotion_tensor = torch.tensor([emotion_happy, emotion_sad, emotion_disgust, emotion_fear, emotion_surprise, emotion_anger, emotion_other, emotion_neutral], device=device, dtype=torch.bfloat16)
vq_tensor = torch.tensor([clarity] * 8, device=device, dtype=torch.bfloat16).unsqueeze(0)
cond_dict = make_cond_dict(
text=input,
language=language,
speaker=speaker_embedding,
emotion=emotion_tensor,
vqscore_8=vq_tensor,
fmax=float(fmax),
pitch_std=float(pitch_std),
speaking_rate=float(speaking_rate),
dnsmos_ovrl=float(dnsmos_ovrl),
device=device,
)
conditioning = model.prepare_conditioning(cond_dict)
codes = model.generate(
prefix_conditioning=conditioning,
max_new_tokens=int(steps),
cfg_scale=float(cfg_scale),
batch_size=1,
sampling_params=dict(min_p=float(min_p)),
)
wav_out = model.autoencoder.decode(codes).cpu().detach()
sr_out = model.autoencoder.sampling_rate
if wav_out.dim() == 2 and wav_out.size(0) > 1: wav_out = wav_out[0:1, :]
return (sr_out, wav_out.squeeze().numpy())
# Initialize
patch_cuda()
with gr.Blocks() as main:
text = gr.Textbox(label="text", value="hello, world!")
language = gr.Dropdown(choices=supported_language_codes, value="en-us", label="language")
speaker_audio = gr.Audio(label="voice reference", type="filepath")
clarity_slider = gr.Slider(0.5, 0.8, 0.8, 0.01, label="clarity")
steps_slider = gr.Slider(1, 3000, 300, 1, label="steps")
dnsmos_slider = gr.Slider(1.0, 5.0, 5.0, 0.1, label="quality")
fmax_slider = gr.Slider(0, 24000, 24000, 1, label="fmax")
pitch_std_slider = gr.Slider(0.0, 300.0, 30.0, 1, label="pitch std")
speaking_rate_slider = gr.Slider(5.0, 30.0, 15.0, 0.1, label="rate")
cfg_scale_slider = gr.Slider(1.0, 5.0, 2.5, 0.1, label="guidance")
min_p_slider = gr.Slider(0.0, 1.0, 0.05, 0.01, label="min p")
with gr.Row():
e1 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="happy")
e2 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="sad")
e3 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="disgust")
e4 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="fear")
e5 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="surprise")
e6 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="anger")
e7 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="other")
e8 = gr.Slider(0.0, 1.0, 1.0, 0.01, label="neutral")
seed_number = gr.Number(label="seed", value=42, precision=0)
randomize_seed_toggle = gr.Checkbox(label="randomize seed", value=True)
generate_button = gr.Button("generate")
output_audio = gr.Audio(label="output", type="numpy", autoplay=True)
generate_button.click(fn=generate, inputs=[text, language, speaker_audio, e1, e2, e3, e4, e5, e6, e7, e8, clarity_slider, fmax_slider, pitch_std_slider, speaking_rate_slider, dnsmos_slider, cfg_scale_slider, min_p_slider, steps_slider, seed_number, randomize_seed_toggle], outputs=output_audio)
main.launch()