Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,63 +1,96 @@
|
|
| 1 |
-
# app.py
|
| 2 |
-
|
|
|
|
| 3 |
from zonos.model import Zonos
|
| 4 |
from zonos.conditioning import make_cond_dict, supported_language_codes
|
| 5 |
-
import tempfile, soundfile as sf
|
| 6 |
|
| 7 |
-
|
|
|
|
| 8 |
torch._dynamo.disable()
|
| 9 |
-
torch.compile=lambda f,*a,**k:f
|
| 10 |
|
| 11 |
-
device="cuda"
|
| 12 |
-
model=Zonos.from_pretrained("Zyphra/Zonos-v0.1-transformer",device=device).eval()
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
| 20 |
|
|
|
|
| 21 |
@spaces.GPU
|
| 22 |
-
def tts(text,lang,speaker,
|
| 23 |
e1,e2,e3,e4,e5,e6,e7,e8,
|
| 24 |
-
vq,fmax,pitch,rate,
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
emotion=emotion,
|
| 30 |
-
vqscore_8=torch.tensor([vq]*8,device=device).unsqueeze(0),
|
| 31 |
-
fmax=float(fmax),
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
with torch.no_grad():
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
|
| 43 |
sf.write(tmp.name, wav,
|
| 44 |
model.autoencoder.sampling_rate,
|
| 45 |
format="WAV", subtype="PCM_16")
|
| 46 |
return tmp.name
|
| 47 |
|
| 48 |
-
|
|
|
|
| 49 |
with gr.Blocks() as demo:
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
gr.
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py ββ Zonos TTS (transformer only, minimal UI)
|
| 2 |
+
|
| 3 |
+
import os, tempfile, torch, numpy as np, gradio as gr, torchaudio, soundfile as sf, spaces
|
| 4 |
from zonos.model import Zonos
|
| 5 |
from zonos.conditioning import make_cond_dict, supported_language_codes
|
|
|
|
| 6 |
|
| 7 |
+
# disable Torch-Inductor (keeps Spaces happy)
|
| 8 |
+
os.environ["TORCH_COMPILE_DISABLE"] = os.environ["TORCHINDUCTOR_DISABLE"] = "1"
|
| 9 |
torch._dynamo.disable()
|
| 10 |
+
torch.compile = lambda f,*a,**k: f # no-op
|
| 11 |
|
| 12 |
+
device = "cuda"
|
| 13 |
+
model = Zonos.from_pretrained("Zyphra/Zonos-v0.1-transformer", device=device).eval()
|
| 14 |
|
| 15 |
+
# βββββββββββββββββββ helpers ββββββββββββββββββββ
|
| 16 |
+
def _speaker_embed(aud):
|
| 17 |
+
if aud is None:
|
| 18 |
+
return None
|
| 19 |
+
sr, wav = aud # gradio returns (sr, np.ndarray)
|
| 20 |
+
if wav.dtype.kind in "iu": # int β float
|
| 21 |
+
wav = wav.astype(np.float32) / np.iinfo(wav.dtype).max
|
| 22 |
+
wav_t = torch.from_numpy(wav).unsqueeze(0) # (1,C,N)
|
| 23 |
+
return model.make_speaker_embedding(wav_t, sr)
|
| 24 |
|
| 25 |
+
# βββββββββββββββββββ inference βββββββββββββββββββ
|
| 26 |
@spaces.GPU
|
| 27 |
+
def tts(text, lang, speaker,
|
| 28 |
e1,e2,e3,e4,e5,e6,e7,e8,
|
| 29 |
+
vq, fmax, pitch, rate,
|
| 30 |
+
cfg, minp, tokens):
|
| 31 |
+
|
| 32 |
+
emotion = torch.tensor([float(x) for x in [e1,e2,e3,e4,e5,e6,e7,e8]],
|
| 33 |
+
device=device, dtype=torch.float32)
|
| 34 |
+
|
| 35 |
+
cond = make_cond_dict(
|
| 36 |
+
text=text,
|
| 37 |
+
language=lang,
|
| 38 |
+
speaker=_speaker_embed(speaker),
|
| 39 |
emotion=emotion,
|
| 40 |
+
vqscore_8=torch.tensor([vq]*8, device=device).unsqueeze(0),
|
| 41 |
+
fmax=float(fmax),
|
| 42 |
+
pitch_std=float(pitch),
|
| 43 |
+
speaking_rate=float(rate),
|
| 44 |
+
device=device
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
with torch.no_grad():
|
| 48 |
+
codes = model.generate(model.prepare_conditioning(cond),
|
| 49 |
+
max_new_tokens=int(tokens),
|
| 50 |
+
cfg_scale=float(cfg),
|
| 51 |
+
sampling_params=dict(min_p=float(minp)))
|
| 52 |
+
wav = model.autoencoder.decode(codes)[0] # (C,N) torch
|
| 53 |
+
wav = wav.cpu().clamp_(-1,1).numpy() # β numpy
|
| 54 |
+
|
| 55 |
+
# >>> FIX <<< ensure (N,) or (N, C) for libsndfile
|
| 56 |
+
wav = np.squeeze(wav)
|
| 57 |
+
if wav.ndim == 2: # currently (C,N)
|
| 58 |
+
wav = wav.T # β (N,C)
|
| 59 |
+
|
| 60 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
|
| 61 |
sf.write(tmp.name, wav,
|
| 62 |
model.autoencoder.sampling_rate,
|
| 63 |
format="WAV", subtype="PCM_16")
|
| 64 |
return tmp.name
|
| 65 |
|
| 66 |
+
# βββββββββββββββββββ UI ββββββββββββββββββββββββββ
|
| 67 |
+
langs = supported_language_codes
|
| 68 |
with gr.Blocks() as demo:
|
| 69 |
+
text = gr.Textbox(label="Text")
|
| 70 |
+
lang = gr.Dropdown(langs, value="en-us", label="Language")
|
| 71 |
+
speaker = gr.Audio(type="numpy", label="Speaker ref (optional)")
|
| 72 |
+
|
| 73 |
+
# emotion sliders (all default 0)
|
| 74 |
+
emotions = []
|
| 75 |
+
for label in ["happiness","sadness","disgust","fear",
|
| 76 |
+
"surprise","anger","other","neutral"]:
|
| 77 |
+
emotions.append(gr.Slider(0,1,0.0,0.05,label=label))
|
| 78 |
+
|
| 79 |
+
vq = gr.Slider(0.5,0.9,0.78,0.01,label="clarity (vq)")
|
| 80 |
+
fmax = gr.Slider(0,24000,24000,100,label="fmax (Hz)")
|
| 81 |
+
pitch= gr.Slider(0,300,45,1,label="pitch variation")
|
| 82 |
+
rate = gr.Slider(5,30,15,0.5,label="speaking rate")
|
| 83 |
+
cfg = gr.Slider(1.1,5,2,0.1,label="guidance scale")
|
| 84 |
+
minp = gr.Slider(0,1,0.15,0.01,label="min-p")
|
| 85 |
+
tokens = gr.Slider(0,3000,300,1,label="tokens (βsteps)")
|
| 86 |
+
|
| 87 |
+
out = gr.Audio(type="filepath", label="Output")
|
| 88 |
+
gr.Button("Generate").click(
|
| 89 |
+
tts,
|
| 90 |
+
inputs=[text, lang, speaker, *emotions,
|
| 91 |
+
vq, fmax, pitch, rate, cfg, minp, tokens],
|
| 92 |
+
outputs=out
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
if __name__ == "__main__":
|
| 96 |
+
demo.launch()
|