Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,71 +1,46 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
import spaces
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
from zonos.model import Zonos
|
| 6 |
from zonos.conditioning import make_cond_dict, supported_language_codes
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
MODEL = Zonos.from_pretrained(MODEL_NAME, device=device)
|
| 11 |
|
| 12 |
-
|
| 13 |
-
# if torch.cuda.is_available():
|
| 14 |
-
# for i in range(torch.cuda.device_count()):
|
| 15 |
-
# p = torch.cuda.get_device_properties(i)
|
| 16 |
-
# if not hasattr(p, "regs_per_multiprocessor"):
|
| 17 |
-
# setattr(p, "regs_per_multiprocessor", 65536)
|
| 18 |
-
# if not hasattr(p, "max_threads_per_multi_processor"):
|
| 19 |
-
# setattr(p, "max_threads_per_multi_processor", 2048)
|
| 20 |
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
@spaces.GPU
|
| 25 |
-
def
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
speaker_audio,
|
| 29 |
-
e1,
|
| 30 |
-
e2,
|
| 31 |
-
e3,
|
| 32 |
-
e4,
|
| 33 |
-
e5,
|
| 34 |
-
e6,
|
| 35 |
-
e7,
|
| 36 |
-
e8,
|
| 37 |
-
clarity,
|
| 38 |
-
fmax,
|
| 39 |
-
pitch_std,
|
| 40 |
-
speaking_rate,
|
| 41 |
-
dnsmos_ovrl,
|
| 42 |
-
cfg_scale,
|
| 43 |
-
min_p,
|
| 44 |
-
steps,
|
| 45 |
-
seed,
|
| 46 |
-
randomize_seed,
|
| 47 |
-
progress=gr.Progress(),
|
| 48 |
-
):
|
| 49 |
-
if randomize_seed:
|
| 50 |
-
seed = torch.randint(0, 2**32 - 1, (1,)).item()
|
| 51 |
-
torch.manual_seed(int(seed))
|
| 52 |
|
| 53 |
speaker_embedding = None
|
| 54 |
if speaker_audio is not None:
|
| 55 |
wav, sr = torchaudio.load(speaker_audio)
|
| 56 |
-
speaker_embedding = (
|
| 57 |
-
MODEL.make_speaker_embedding(wav, sr).to(device, dtype=torch.bfloat16)
|
| 58 |
-
)
|
| 59 |
|
| 60 |
-
emotion_tensor = torch.tensor(
|
| 61 |
-
|
| 62 |
-
)
|
| 63 |
-
vq_tensor = torch.tensor([clarity] * 8, device=device, dtype=torch.float32).unsqueeze(
|
| 64 |
-
0
|
| 65 |
-
)
|
| 66 |
|
| 67 |
cond_dict = make_cond_dict(
|
| 68 |
-
text=
|
| 69 |
language=language,
|
| 70 |
speaker=speaker_embedding,
|
| 71 |
emotion=emotion_tensor,
|
|
@@ -76,15 +51,10 @@ def generate_audio(
|
|
| 76 |
dnsmos_ovrl=float(dnsmos_ovrl),
|
| 77 |
device=device,
|
| 78 |
)
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
estimated_total_steps = int(steps)
|
| 82 |
|
| 83 |
-
|
| 84 |
-
progress((step, estimated_total_steps))
|
| 85 |
-
return True
|
| 86 |
-
|
| 87 |
-
codes = MODEL.generate(
|
| 88 |
prefix_conditioning=conditioning,
|
| 89 |
max_new_tokens=int(steps),
|
| 90 |
cfg_scale=float(cfg_scale),
|
|
@@ -93,78 +63,48 @@ def generate_audio(
|
|
| 93 |
callback=cb,
|
| 94 |
)
|
| 95 |
|
| 96 |
-
wav_out =
|
| 97 |
-
sr_out =
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
return (sr_out, wav_out.squeeze().numpy()), seed
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
def build_interface():
|
| 104 |
-
with gr.Blocks() as demo:
|
| 105 |
-
text = gr.Textbox(label="text", value="hello, world!", lines=4, max_length=500)
|
| 106 |
-
language = gr.Dropdown(choices=supported_language_codes, value="en-us", label="language")
|
| 107 |
-
speaker_audio = gr.Audio(label="voice reference", type="filepath")
|
| 108 |
-
|
| 109 |
-
clarity_slider = gr.Slider(0.5, 0.8, 0.8, 0.01, label="clarity")
|
| 110 |
-
steps_slider = gr.Slider(1, 3000, 300, 1, label="steps")
|
| 111 |
-
|
| 112 |
-
dnsmos_slider = gr.Slider(1.0, 5.0, 5.0, 0.1, label="quality")
|
| 113 |
-
fmax_slider = gr.Slider(0, 24000, 24000, 1, label="fmax")
|
| 114 |
-
pitch_std_slider = gr.Slider(0.0, 300.0, 30.0, 1, label="pitch std")
|
| 115 |
-
speaking_rate_slider = gr.Slider(5.0, 30.0, 15.0, 0.1, label="rate")
|
| 116 |
-
|
| 117 |
-
cfg_scale_slider = gr.Slider(1.0, 5.0, 2.5, 0.1, label="guidance")
|
| 118 |
-
min_p_slider = gr.Slider(0.0, 1.0, 0.05, 0.01, label="min p")
|
| 119 |
-
|
| 120 |
-
with gr.Row():
|
| 121 |
-
e1 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="happy")
|
| 122 |
-
e2 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="sad")
|
| 123 |
-
e3 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="disgust")
|
| 124 |
-
e4 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="fear")
|
| 125 |
-
|
| 126 |
-
with gr.Row():
|
| 127 |
-
e5 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="surprise")
|
| 128 |
-
e6 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="anger")
|
| 129 |
-
e7 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="other")
|
| 130 |
-
e8 = gr.Slider(0.0, 1.0, 1.0, 0.01, label="neutral")
|
| 131 |
-
|
| 132 |
-
seed_number = gr.Number(label="seed", value=420, precision=0)
|
| 133 |
-
randomize_seed_toggle = gr.Checkbox(label="randomize seed", value=True)
|
| 134 |
-
|
| 135 |
-
generate_button = gr.Button("generate")
|
| 136 |
-
output_audio = gr.Audio(label="output", type="numpy", autoplay=True)
|
| 137 |
-
|
| 138 |
-
generate_button.click(
|
| 139 |
-
fn=generate_audio,
|
| 140 |
-
inputs=[
|
| 141 |
-
text,
|
| 142 |
-
language,
|
| 143 |
-
speaker_audio,
|
| 144 |
-
e1,
|
| 145 |
-
e2,
|
| 146 |
-
e3,
|
| 147 |
-
e4,
|
| 148 |
-
e5,
|
| 149 |
-
e6,
|
| 150 |
-
e7,
|
| 151 |
-
e8,
|
| 152 |
-
clarity_slider,
|
| 153 |
-
fmax_slider,
|
| 154 |
-
pitch_std_slider,
|
| 155 |
-
speaking_rate_slider,
|
| 156 |
-
dnsmos_slider,
|
| 157 |
-
cfg_scale_slider,
|
| 158 |
-
min_p_slider,
|
| 159 |
-
steps_slider,
|
| 160 |
-
seed_number,
|
| 161 |
-
randomize_seed_toggle,
|
| 162 |
-
],
|
| 163 |
-
outputs=[output_audio, seed_number],
|
| 164 |
-
)
|
| 165 |
|
| 166 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
|
|
|
|
| 168 |
|
| 169 |
-
|
| 170 |
-
build_interface().launch()
|
|
|
|
| 1 |
+
# Imports
|
| 2 |
+
import gradio as gr
|
| 3 |
import spaces
|
| 4 |
+
import os
|
| 5 |
+
import torch
|
| 6 |
+
import torchaudio
|
| 7 |
|
| 8 |
from zonos.model import Zonos
|
| 9 |
from zonos.conditioning import make_cond_dict, supported_language_codes
|
| 10 |
|
| 11 |
+
# Variables
|
| 12 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", "")
|
|
|
|
| 13 |
|
| 14 |
+
device = "cuda"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
REPO = "Zyphra/Zonos-v0.1-transformer"
|
| 17 |
+
model = Zonos.from_pretrained(REPO, device=device)
|
| 18 |
|
| 19 |
+
# Functions
|
| 20 |
+
def patch_cuda():
|
| 21 |
+
if torch.cuda.is_available():
|
| 22 |
+
for i in range(torch.cuda.device_count()):
|
| 23 |
+
p = torch.cuda.get_device_properties(i)
|
| 24 |
+
if not hasattr(p, "regs_per_multiprocessor"):
|
| 25 |
+
setattr(p, "regs_per_multiprocessor", 65536)
|
| 26 |
+
if not hasattr(p, "max_threads_per_multi_processor"):
|
| 27 |
+
setattr(p, "max_threads_per_multi_processor", 2048)
|
| 28 |
|
| 29 |
@spaces.GPU
|
| 30 |
+
def generate(input, language, speaker_audio, emotion_happy, emotion_sad, emotion_disgust, emotion_fear, emotion_surprise, emotion_anger, emotion_other, emotion_neutral, clarity, fmax, pitch_std, speaking_rate, dnsmos_ovrl, cfg_scale, min_p, steps, seed, randomize_seed):
|
| 31 |
+
if randomize_seed: seed = int(time.time())
|
| 32 |
+
torch.manual_seed(seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
speaker_embedding = None
|
| 35 |
if speaker_audio is not None:
|
| 36 |
wav, sr = torchaudio.load(speaker_audio)
|
| 37 |
+
speaker_embedding = (model.make_speaker_embedding(wav, sr).to(device, dtype=torch.bfloat16))
|
|
|
|
|
|
|
| 38 |
|
| 39 |
+
emotion_tensor = torch.tensor([emotion_happy, emotion_sad, emotion_disgust, emotion_fear, emotion_surprise, emotion_anger, emotion_other, emotion_neutral], device=device, dtype=torch.bfloat16)
|
| 40 |
+
vq_tensor = torch.tensor([clarity] * 8, device=device, dtype=torch.bfloat16).unsqueeze(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
cond_dict = make_cond_dict(
|
| 43 |
+
text=input,
|
| 44 |
language=language,
|
| 45 |
speaker=speaker_embedding,
|
| 46 |
emotion=emotion_tensor,
|
|
|
|
| 51 |
dnsmos_ovrl=float(dnsmos_ovrl),
|
| 52 |
device=device,
|
| 53 |
)
|
| 54 |
+
|
| 55 |
+
conditioning = model.prepare_conditioning(cond_dict)
|
|
|
|
| 56 |
|
| 57 |
+
codes = model.generate(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
prefix_conditioning=conditioning,
|
| 59 |
max_new_tokens=int(steps),
|
| 60 |
cfg_scale=float(cfg_scale),
|
|
|
|
| 63 |
callback=cb,
|
| 64 |
)
|
| 65 |
|
| 66 |
+
wav_out = model.autoencoder.decode(codes).cpu().detach()
|
| 67 |
+
sr_out = model.autoencoder.sampling_rate
|
| 68 |
+
|
| 69 |
+
if wav_out.dim() == 2 and wav_out.size(0) > 1: wav_out = wav_out[0:1, :]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
+
return (sr_out, wav_out.squeeze().numpy())
|
| 72 |
+
|
| 73 |
+
# Initialize
|
| 74 |
+
patch_cuda()
|
| 75 |
+
|
| 76 |
+
with gr.Blocks() as main:
|
| 77 |
+
text = gr.Textbox(label="text", value="hello, world!")
|
| 78 |
+
language = gr.Dropdown(choices=supported_language_codes, value="en-us", label="language")
|
| 79 |
+
speaker_audio = gr.Audio(label="voice reference", type="filepath")
|
| 80 |
+
|
| 81 |
+
clarity_slider = gr.Slider(0.5, 0.8, 0.8, 0.01, label="clarity")
|
| 82 |
+
steps_slider = gr.Slider(1, 3000, 300, 1, label="steps")
|
| 83 |
+
|
| 84 |
+
dnsmos_slider = gr.Slider(1.0, 5.0, 5.0, 0.1, label="quality")
|
| 85 |
+
fmax_slider = gr.Slider(0, 24000, 24000, 1, label="fmax")
|
| 86 |
+
pitch_std_slider = gr.Slider(0.0, 300.0, 30.0, 1, label="pitch std")
|
| 87 |
+
speaking_rate_slider = gr.Slider(5.0, 30.0, 15.0, 0.1, label="rate")
|
| 88 |
+
|
| 89 |
+
cfg_scale_slider = gr.Slider(1.0, 5.0, 2.5, 0.1, label="guidance")
|
| 90 |
+
min_p_slider = gr.Slider(0.0, 1.0, 0.05, 0.01, label="min p")
|
| 91 |
+
|
| 92 |
+
with gr.Row():
|
| 93 |
+
e1 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="happy")
|
| 94 |
+
e2 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="sad")
|
| 95 |
+
e3 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="disgust")
|
| 96 |
+
e4 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="fear")
|
| 97 |
+
e5 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="surprise")
|
| 98 |
+
e6 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="anger")
|
| 99 |
+
e7 = gr.Slider(0.0, 1.0, 0.0, 0.01, label="other")
|
| 100 |
+
e8 = gr.Slider(0.0, 1.0, 1.0, 0.01, label="neutral")
|
| 101 |
+
|
| 102 |
+
seed_number = gr.Number(label="seed", value=42, precision=0)
|
| 103 |
+
randomize_seed_toggle = gr.Checkbox(label="randomize seed", value=True)
|
| 104 |
+
|
| 105 |
+
generate_button = gr.Button("generate")
|
| 106 |
+
output_audio = gr.Audio(label="output", type="numpy", autoplay=True)
|
| 107 |
|
| 108 |
+
generate_button.click(fn=generate, inputs=[text, language, speaker_audio, e1, e2, e3, e4, e5, e6, e7, e8, clarity_slider, fmax_slider, pitch_std_slider, speaking_rate_slider, dnsmos_slider, cfg_scale_slider, min_p_slider, steps_slider, seed_number, randomize_seed_toggle], outputs=output_audio)
|
| 109 |
|
| 110 |
+
main.launch()
|
|
|