Spaces:
Sleeping
Sleeping
code cleaned and issues fixed
Browse files- agent.py +224 -0
- app.py +1 -149
- requirements.txt +2 -1
agent.py
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import TypedDict, List, Dict, Any, Optional
|
3 |
+
from langgraph.graph import StateGraph, START, END
|
4 |
+
from langchain_openai import ChatOpenAI
|
5 |
+
from langchain_core.messages import HumanMessage, AIMessage
|
6 |
+
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
|
7 |
+
from langgraph.prebuilt import ToolNode, tools_condition
|
8 |
+
from langchain_core.messages import HumanMessage, SystemMessage
|
9 |
+
from langchain_core.utils.function_calling import convert_to_openai_tool
|
10 |
+
from langchain.tools import Tool
|
11 |
+
from serpapi import GoogleSearch
|
12 |
+
import requests
|
13 |
+
from bs4 import BeautifulSoup
|
14 |
+
|
15 |
+
SERPAPI_API_KEY = os.environ["SERPAPI_TOKEN"]
|
16 |
+
|
17 |
+
def serpapi_search(query: str) -> str:
|
18 |
+
print(f"Running SerpAPI search for: {query}")
|
19 |
+
params = {
|
20 |
+
"engine": "google",
|
21 |
+
"q": query,
|
22 |
+
"api_key": SERPAPI_API_KEY,
|
23 |
+
"num": 3,
|
24 |
+
}
|
25 |
+
search = GoogleSearch(params)
|
26 |
+
results = search.get_dict()
|
27 |
+
if "organic_results" in results:
|
28 |
+
snippets = []
|
29 |
+
for item in results["organic_results"]:
|
30 |
+
snippet = item.get("snippet", "")
|
31 |
+
link = item.get("link", "")
|
32 |
+
snippets.append(f"{snippet}\nURL: {link}")
|
33 |
+
return "\n\n".join(snippets)
|
34 |
+
return "No results found."
|
35 |
+
|
36 |
+
serpapi_tool = Tool(
|
37 |
+
name="serpapi_search",
|
38 |
+
func=serpapi_search,
|
39 |
+
description="A tool that allows you to search the web using Google via SerpAPI. Input should be a search query."
|
40 |
+
)
|
41 |
+
|
42 |
+
def fetch_website_content(url: str) -> str:
|
43 |
+
print(f"Fetching website content from: {url}")
|
44 |
+
try:
|
45 |
+
response = requests.get(url, timeout=5)
|
46 |
+
response.raise_for_status()
|
47 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
48 |
+
# Get main text content (very basic)
|
49 |
+
text = soup.get_text(separator="\n", strip=True)
|
50 |
+
return text[:1000] # Return first 1000 chars for brevity
|
51 |
+
except Exception as e:
|
52 |
+
print(f"Error fetching website: {e}")
|
53 |
+
return f"Error fetching website: {e}"
|
54 |
+
|
55 |
+
fetch_website_tool = Tool(
|
56 |
+
name="fetch_website_content",
|
57 |
+
func=fetch_website_content,
|
58 |
+
description="Fetches and returns the main text content of a given website URL."
|
59 |
+
)
|
60 |
+
|
61 |
+
# Initialize LLM
|
62 |
+
model = ChatOpenAI( model="gpt-4o",temperature=0)
|
63 |
+
#model = ChatOpenAI(model="gpt-4o-mini", temperature=0)
|
64 |
+
#vision_llm = ChatOpenAI(model="gpt-4o")
|
65 |
+
|
66 |
+
#search_tool = DuckDuckGoSearchRun()
|
67 |
+
tools = [serpapi_tool]#, fetch_website_tool]
|
68 |
+
|
69 |
+
llm_with_tools = model.bind_tools(tools, parallel_tool_calls=False)
|
70 |
+
|
71 |
+
class AgentState(TypedDict):
|
72 |
+
question: Dict[str, Any]
|
73 |
+
messages: List[Any]
|
74 |
+
answer: Optional[str]
|
75 |
+
tool_calls: Optional[list]
|
76 |
+
tool_outputs: Optional[list]
|
77 |
+
|
78 |
+
def assistant(state: AgentState):
|
79 |
+
print("\n--- ASSISTANT NODE ---")
|
80 |
+
print(f"State received: {state}")
|
81 |
+
question = state["question"]
|
82 |
+
print(f"Question dict: {question}")
|
83 |
+
#textual_description_of_tool = """
|
84 |
+
#search_tool: A tool that allows you to search the web using DuckDuckGo. It returns a list of search results based on the query provided.
|
85 |
+
#"""
|
86 |
+
textual_description_of_tool = """
|
87 |
+
serpapi_search: A tool that allows you to search the web using Google via SerpAPI. It returns a list of search results based on the query provided.
|
88 |
+
fetch_website_content(url: str) -> str: A tool that fetches and returns the main text content of a given website URL.
|
89 |
+
"""
|
90 |
+
system_prompt = SystemMessage(
|
91 |
+
content=f"""
|
92 |
+
Your answers are tested. Try to answer the question as accurately as possible. Give only the minimum necessary information to answer the question.
|
93 |
+
If you use a tool, answer the question using the tool results provided below.
|
94 |
+
Tool results will be provided as context after your question. If you receive a tool output, then use this information and come to the final answer if possible.
|
95 |
+
Only call another tool if you cannot answer the question with the information provided.
|
96 |
+
If you formulate your final answer, analyze it if it really ONLY answers the question. Don't provide additional information. One word, number or name is enough if it answers the question.
|
97 |
+
"""
|
98 |
+
#You can use the following tools to help you:
|
99 |
+
#{textual_description_of_tool}
|
100 |
+
|
101 |
+
)
|
102 |
+
|
103 |
+
messages = [system_prompt]
|
104 |
+
# Always add the user question
|
105 |
+
messages.append(HumanMessage(content=f"Question: {question.get('question', question)}"))
|
106 |
+
# If tool_outputs exist, add them as context
|
107 |
+
if state.get("tool_outputs"):
|
108 |
+
# Format tool results as plain text
|
109 |
+
tool_results = state["tool_outputs"]
|
110 |
+
if isinstance(tool_results, dict):
|
111 |
+
tool_text = ""
|
112 |
+
if "search_results" in tool_results and tool_results["search_results"]:
|
113 |
+
tool_text += "Search Results:\n"
|
114 |
+
tool_text += "\n".join(str(r) for r in tool_results["search_results"])
|
115 |
+
if "website_contents" in tool_results and tool_results["website_contents"]:
|
116 |
+
tool_text += "\nWebsite Contents:\n"
|
117 |
+
for wc in tool_results["website_contents"]:
|
118 |
+
tool_text += f"\nURL: {wc['url']}\nContent: {wc['content']}\n"
|
119 |
+
else:
|
120 |
+
tool_text = str(tool_results)
|
121 |
+
messages.append(HumanMessage(content=f"Tool results:\n{tool_text}"))
|
122 |
+
|
123 |
+
print(f"Messages sent to LLM: {messages}")
|
124 |
+
response = llm_with_tools.invoke(messages)
|
125 |
+
print(f"Raw LLM response: {response}")
|
126 |
+
# If the LLM wants to call a tool, store tool_calls in state
|
127 |
+
tool_calls = getattr(response, "tool_calls", None)
|
128 |
+
if tool_calls:
|
129 |
+
print(f"Tool calls requested: {tool_calls}")
|
130 |
+
state["tool_calls"] = tool_calls
|
131 |
+
state["answer"] = "" # Not final yet
|
132 |
+
state.setdefault("messages", []).append(AIMessage(content="Calling tool: " + str(tool_calls)))
|
133 |
+
else:
|
134 |
+
state["answer"] = response.content.strip()
|
135 |
+
print(f"Model response: {state['answer']}")
|
136 |
+
state.setdefault("messages", []).append(AIMessage(content=state["answer"]))
|
137 |
+
state["tool_calls"] = None
|
138 |
+
return state
|
139 |
+
|
140 |
+
def tool_node(state: AgentState):
|
141 |
+
print("\n--- TOOL NODE ---")
|
142 |
+
print(f"State received: {state}")
|
143 |
+
search_results = []
|
144 |
+
website_contents = []
|
145 |
+
|
146 |
+
tool_calls = state.get("tool_calls") or []
|
147 |
+
for call in tool_calls:
|
148 |
+
print(f"Tool call: {call}")
|
149 |
+
args = call.get("args", {})
|
150 |
+
# Accept both {"query": ...} and {"__arg1": ...}
|
151 |
+
query = args.get("query") or args.get("__arg1") or (list(args.values())[0] if args else None)
|
152 |
+
print(f"Query to use: {query}")
|
153 |
+
|
154 |
+
if call["name"] == "serpapi_search":
|
155 |
+
print("--- SERPAPI SEARCH ---")
|
156 |
+
try:
|
157 |
+
result = serpapi_search(query)
|
158 |
+
search_results.append(result)
|
159 |
+
except Exception as e:
|
160 |
+
print(f"Error running SerpAPI search: {e}")
|
161 |
+
search_results.append(f"Error: {e}")
|
162 |
+
|
163 |
+
elif call["name"] == "fetch_website_content":
|
164 |
+
print("--- FETCH WEBSITE CONTENT ---")
|
165 |
+
try:
|
166 |
+
content = fetch_website_content(query)
|
167 |
+
website_contents.append({"url": query, "content": content})
|
168 |
+
except Exception as e:
|
169 |
+
print(f"Error fetching website: {e}")
|
170 |
+
website_contents.append({"url": query, "content": f"Error: {e}"})
|
171 |
+
|
172 |
+
# Store tool outputs in state for the assistant
|
173 |
+
state["tool_outputs"] = {
|
174 |
+
"search_results": search_results,
|
175 |
+
"website_contents": website_contents
|
176 |
+
}
|
177 |
+
state["tool_calls"] = None # Clear tool calls
|
178 |
+
|
179 |
+
# Add tool results to conversation history for traceability
|
180 |
+
state.setdefault("messages", []).append(
|
181 |
+
HumanMessage(content=f"Tool results: {state['tool_outputs']}")
|
182 |
+
)
|
183 |
+
return state
|
184 |
+
|
185 |
+
class BasicAgent:
|
186 |
+
compiled_graph: StateGraph
|
187 |
+
def __init__(self):
|
188 |
+
print("BasicAgent initialized.")
|
189 |
+
#building the graph
|
190 |
+
answering_graph = StateGraph(AgentState)
|
191 |
+
|
192 |
+
# Add nodes
|
193 |
+
answering_graph.add_node("assistant", assistant)
|
194 |
+
#answering_graph.add_node("tools", ToolNode(tools))
|
195 |
+
answering_graph.add_node("tools", tool_node)
|
196 |
+
|
197 |
+
# Add edges
|
198 |
+
answering_graph.add_edge(START, "assistant")
|
199 |
+
answering_graph.add_conditional_edges(
|
200 |
+
"assistant",
|
201 |
+
lambda state: "tools" if state.get("tool_calls") else END
|
202 |
+
)
|
203 |
+
answering_graph.add_edge("tools", "assistant")
|
204 |
+
|
205 |
+
# Compile the graph
|
206 |
+
self.compiled_graph = answering_graph.compile()
|
207 |
+
|
208 |
+
|
209 |
+
def __call__(self, question: str) -> str:
|
210 |
+
question_text = question.get("question")
|
211 |
+
print(f"Agent received question (first 50 chars): {question_text[:50]}...")
|
212 |
+
|
213 |
+
initial_state = {
|
214 |
+
"question": question,
|
215 |
+
"messages": [],
|
216 |
+
"answer": None,
|
217 |
+
"tool_calls": None,
|
218 |
+
"tool_outputs": None
|
219 |
+
}
|
220 |
+
|
221 |
+
print(f"Initial state: {initial_state}")
|
222 |
+
answer = self.compiled_graph.invoke(initial_state)
|
223 |
+
print(f"Agent returning answer: {answer.get('answer')}")
|
224 |
+
return answer.get("answer")
|
app.py
CHANGED
@@ -15,6 +15,7 @@ from langchain_core.messages import HumanMessage, SystemMessage
|
|
15 |
from langchain_core.utils.function_calling import convert_to_openai_tool
|
16 |
from langchain.tools import Tool
|
17 |
from serpapi import GoogleSearch
|
|
|
18 |
|
19 |
# (Keep Constants as is)
|
20 |
# --- Constants ---
|
@@ -25,155 +26,6 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
25 |
|
26 |
SERPAPI_API_KEY = os.environ["SERPAPI_TOKEN"]
|
27 |
|
28 |
-
def serpapi_search(query: str) -> str:
|
29 |
-
print(f"Running SerpAPI search for: {query}")
|
30 |
-
params = {
|
31 |
-
"engine": "google",
|
32 |
-
"q": query,
|
33 |
-
"api_key": SERPAPI_API_KEY,
|
34 |
-
"num": 3,
|
35 |
-
}
|
36 |
-
search = GoogleSearch(params)
|
37 |
-
results = search.get_dict()
|
38 |
-
if "organic_results" in results:
|
39 |
-
snippets = [item.get("snippet", "") for item in results["organic_results"]]
|
40 |
-
return "\n".join(snippets)
|
41 |
-
return "No results found."
|
42 |
-
|
43 |
-
serpapi_tool = Tool(
|
44 |
-
name="serpapi_search",
|
45 |
-
func=serpapi_search,
|
46 |
-
description="A tool that allows you to search the web using Google via SerpAPI. Input should be a search query."
|
47 |
-
)
|
48 |
-
|
49 |
-
# Initialize LLM
|
50 |
-
model = ChatOpenAI( model="gpt-4o",temperature=0)
|
51 |
-
vision_llm = ChatOpenAI(model="gpt-4o")
|
52 |
-
|
53 |
-
#search_tool = DuckDuckGoSearchRun()
|
54 |
-
tools = [serpapi_tool]
|
55 |
-
|
56 |
-
llm_with_tools = model.bind_tools(tools, parallel_tool_calls=False)
|
57 |
-
|
58 |
-
class AgentState(TypedDict):
|
59 |
-
question: Dict[str, Any]
|
60 |
-
messages: List[Any]
|
61 |
-
answer: Optional[str]
|
62 |
-
tool_calls: Optional[list]
|
63 |
-
tool_outputs: Optional[list]
|
64 |
-
|
65 |
-
def assistant(state: AgentState):
|
66 |
-
print("\n--- ASSISTANT NODE ---")
|
67 |
-
print(f"State received: {state}")
|
68 |
-
question = state["question"]
|
69 |
-
print(f"Question dict: {question}")
|
70 |
-
#textual_description_of_tool = """
|
71 |
-
#search_tool: A tool that allows you to search the web using DuckDuckGo. It returns a list of search results based on the query provided.
|
72 |
-
#"""
|
73 |
-
textual_description_of_tool = """
|
74 |
-
serpapi_search: A tool that allows you to search the web using Google via SerpAPI. It returns a list of search results based on the query provided.
|
75 |
-
"""
|
76 |
-
system_prompt = SystemMessage(
|
77 |
-
content=f"""
|
78 |
-
You are an expert assistant. Try to answer the question as accurately as possible. Give only the minimum necessary information to answer the question.
|
79 |
-
E.g. if the question is to only give the first name of a person then only give the fist name. No additional information or context is needed.
|
80 |
-
Or if you are asked to give a number, then only give the number.
|
81 |
-
If you don't know the answer, you can use the tools available to you.
|
82 |
-
But try to answer the question first and only use the tools if you are not sure.
|
83 |
-
If you get a response from a tool, try to come to the final answer.
|
84 |
-
You can use the following tools to help you:
|
85 |
-
{textual_description_of_tool}
|
86 |
-
"""
|
87 |
-
)
|
88 |
-
# Always include conversation history
|
89 |
-
messages = [system_prompt] + state.get("messages", [])
|
90 |
-
# Add the user question only if not already present
|
91 |
-
if not any(isinstance(m, HumanMessage) and m.content.startswith("Question:") for m in messages):
|
92 |
-
user_prompt = HumanMessage(content=f"Question: {question.get('question', question)}")
|
93 |
-
messages.append(user_prompt)
|
94 |
-
# If tool_outputs exist, add them as context
|
95 |
-
if state.get("tool_outputs"):
|
96 |
-
tool_msg = HumanMessage(content=f"Tool results: {state['tool_outputs']}")
|
97 |
-
messages.append(tool_msg)
|
98 |
-
state.setdefault("messages", []).append(tool_msg)
|
99 |
-
print(f"Messages sent to LLM: {messages}")
|
100 |
-
response = llm_with_tools.invoke(messages)
|
101 |
-
print(f"Raw LLM response: {response}")
|
102 |
-
# If the LLM wants to call a tool, store tool_calls in state
|
103 |
-
tool_calls = getattr(response, "tool_calls", None)
|
104 |
-
if tool_calls:
|
105 |
-
print(f"Tool calls requested: {tool_calls}")
|
106 |
-
state["tool_calls"] = tool_calls
|
107 |
-
state["answer"] = "" # Not final yet
|
108 |
-
state.setdefault("messages", []).append(AIMessage(content="Calling tool: " + str(tool_calls)))
|
109 |
-
else:
|
110 |
-
state["answer"] = response.content.strip()
|
111 |
-
print(f"Model response: {state['answer']}")
|
112 |
-
state.setdefault("messages", []).append(AIMessage(content=state["answer"]))
|
113 |
-
return state
|
114 |
-
|
115 |
-
def tool_node(state: AgentState):
|
116 |
-
print("\n--- TOOL NODE ---")
|
117 |
-
print(f"State received: {state}")
|
118 |
-
outputs = []
|
119 |
-
for call in state.get("tool_calls", []):
|
120 |
-
print(f"Tool call: {call}")
|
121 |
-
args = call.get("args", {})
|
122 |
-
# Try to get 'query' or fallback to the first value
|
123 |
-
query = args.get("query")
|
124 |
-
if query is None and len(args) > 0:
|
125 |
-
query = list(args.values())[0]
|
126 |
-
print(f"Query to use: {query}")
|
127 |
-
if call["name"] == "serpapi_search":
|
128 |
-
try:
|
129 |
-
result = serpapi_search(query)
|
130 |
-
except Exception as e:
|
131 |
-
print(f"Error running SerpAPI search: {e}")
|
132 |
-
result = f"Error: {e}"
|
133 |
-
outputs.append(result)
|
134 |
-
state["tool_outputs"] = outputs
|
135 |
-
state["tool_calls"] = None # Clear tool calls
|
136 |
-
# Append tool output to conversation history
|
137 |
-
state.setdefault("messages", []).append(HumanMessage(content=f"Tool results: {outputs}"))
|
138 |
-
return state
|
139 |
-
|
140 |
-
#building the graph
|
141 |
-
answering_graph = StateGraph(AgentState)
|
142 |
-
|
143 |
-
# Add nodes
|
144 |
-
answering_graph.add_node("assistant", assistant)
|
145 |
-
#answering_graph.add_node("tools", ToolNode(tools))
|
146 |
-
answering_graph.add_node("tools", tool_node)
|
147 |
-
|
148 |
-
# Add edges
|
149 |
-
answering_graph.add_edge(START, "assistant")
|
150 |
-
answering_graph.add_conditional_edges(
|
151 |
-
"assistant",
|
152 |
-
lambda state: "tools" if state.get("tool_calls") else END
|
153 |
-
)
|
154 |
-
answering_graph.add_edge("tools", "assistant")
|
155 |
-
|
156 |
-
# Compile the graph
|
157 |
-
compiled_graph = answering_graph.compile()
|
158 |
-
|
159 |
-
class BasicAgent:
|
160 |
-
def __init__(self):
|
161 |
-
print("BasicAgent initialized.")
|
162 |
-
def __call__(self, question: str) -> str:
|
163 |
-
question_text = question.get("question")
|
164 |
-
print(f"Agent received question (first 50 chars): {question_text[:50]}...")
|
165 |
-
|
166 |
-
initial_state = {
|
167 |
-
"question": question,
|
168 |
-
"messages": [],
|
169 |
-
"answer": None
|
170 |
-
}
|
171 |
-
|
172 |
-
print(f"Initial state: {initial_state}")
|
173 |
-
answer = compiled_graph.invoke(initial_state)
|
174 |
-
print(f"Agent returning answer: {answer.get('answer')}")
|
175 |
-
return answer.get("answer")
|
176 |
-
|
177 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
178 |
"""
|
179 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
|
|
15 |
from langchain_core.utils.function_calling import convert_to_openai_tool
|
16 |
from langchain.tools import Tool
|
17 |
from serpapi import GoogleSearch
|
18 |
+
from agent import BasicAgent
|
19 |
|
20 |
# (Keep Constants as is)
|
21 |
# --- Constants ---
|
|
|
26 |
|
27 |
SERPAPI_API_KEY = os.environ["SERPAPI_TOKEN"]
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
30 |
"""
|
31 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
requirements.txt
CHANGED
@@ -9,4 +9,5 @@ serpapi
|
|
9 |
gradio
|
10 |
requests
|
11 |
pandas
|
12 |
-
ipython
|
|
|
|
9 |
gradio
|
10 |
requests
|
11 |
pandas
|
12 |
+
ipython
|
13 |
+
beautifulsoup4
|