Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import zipfile
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
6 |
+
|
7 |
+
# 情感模型(京东)
|
8 |
+
sentiment_model_name = "uer/roberta-base-finetuned-jd-binary-chinese"
|
9 |
+
sentiment_tokenizer = AutoTokenizer.from_pretrained(sentiment_model_name)
|
10 |
+
sentiment_model = AutoModelForSequenceClassification.from_pretrained(sentiment_model_name)
|
11 |
+
sentiment_model.eval()
|
12 |
+
|
13 |
+
# 解压你自己的多标签模型
|
14 |
+
if not os.path.exists("result"):
|
15 |
+
with zipfile.ZipFile("model_output.zip", "r") as zip_ref:
|
16 |
+
zip_ref.extractall(".")
|
17 |
+
|
18 |
+
# 加载你的多标签分类模型
|
19 |
+
custom_tokenizer = AutoTokenizer.from_pretrained("result")
|
20 |
+
custom_model = AutoModelForSequenceClassification.from_pretrained("result", use_safetensors=True)
|
21 |
+
custom_model.eval()
|
22 |
+
|
23 |
+
# 多标签类别
|
24 |
+
label_map = {
|
25 |
+
0: "Landscape & Culture",
|
26 |
+
1: "Service & Facilities",
|
27 |
+
2: "Experience & Atmosphere",
|
28 |
+
3: "Transportation Accessibility",
|
29 |
+
4: "Interactive Activities",
|
30 |
+
5: "Price & Consumption"
|
31 |
+
}
|
32 |
+
|
33 |
+
# 推理函数
|
34 |
+
def analyze(text, threshold=0.5):
|
35 |
+
# 情感分析
|
36 |
+
inputs = sentiment_tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
|
37 |
+
with torch.no_grad():
|
38 |
+
outputs = sentiment_model(**inputs)
|
39 |
+
probs = torch.softmax(outputs.logits, dim=1).squeeze().tolist()
|
40 |
+
sentiment = "积极 (Positive)" if torch.argmax(outputs.logits) == 1 else "消极 (Negative)"
|
41 |
+
sentiment_result = f"{sentiment}\nPositive: {probs[1]:.2f}, Negative: {probs[0]:.2f}"
|
42 |
+
|
43 |
+
# 多标签分类
|
44 |
+
inputs = custom_tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
|
45 |
+
with torch.no_grad():
|
46 |
+
logits = custom_model(**inputs).logits
|
47 |
+
probs = torch.sigmoid(logits).squeeze().tolist()
|
48 |
+
if isinstance(probs, float): # 单个标签时
|
49 |
+
probs = [probs]
|
50 |
+
results = [
|
51 |
+
f"{label_map[i]} ({probs[i]:.2f})"
|
52 |
+
for i in range(len(probs)) if probs[i] >= threshold
|
53 |
+
]
|
54 |
+
if results:
|
55 |
+
label_result = "\n".join(results)
|
56 |
+
else:
|
57 |
+
label_result = "The model was unable to identify the correct labels."
|
58 |
+
|
59 |
+
return f"【Sentiment analysis】\n{sentiment_result}\n\n【Category of topic】\n{label_result}"
|
60 |
+
|
61 |
+
# 创建 Gradio 页面
|
62 |
+
demo = gr.Interface(
|
63 |
+
fn=analyze,
|
64 |
+
inputs=[
|
65 |
+
gr.Textbox(lines=3, label="请输入评论内容"),
|
66 |
+
gr.Slider(minimum=0.1, maximum=0.9, step=0.05, value=0.5, label="分类标签阈值")
|
67 |
+
],
|
68 |
+
outputs="text",
|
69 |
+
title="中文评论分析器",
|
70 |
+
description="使用京东情感模型 + 自定义多标签模型,对评论内容进行双重分析"
|
71 |
+
)
|
72 |
+
|
73 |
+
demo.launch()
|