Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from sentence_transformers import SentenceTransformer, util
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
# Stap 1: laadt het fine-tuned movie-recommender-model
|
6 |
+
# Model ID: JJTsao/fine-tuned_movie_retriever-bge-base-en-v1.5
|
7 |
+
model = SentenceTransformer("JJTsao/fine-tuned_movie_retriever-bge-base-en-v1.5")
|
8 |
+
|
9 |
+
# Stap 2: laad 'movies.csv' (zorg dat dit bestand al bestaat)
|
10 |
+
movies = pd.read_csv("movies.csv")
|
11 |
+
# Bereken embeddings voor elke filmtitel (eenmalig bij opstart)
|
12 |
+
movie_embeddings = model.encode(movies["title"].tolist(), convert_to_tensor=True)
|
13 |
+
|
14 |
+
def recommend(favorite_movie: str):
|
15 |
+
"""
|
16 |
+
Krijg vijf aanbevolen titels op basis van de opgegeven film of omschrijving.
|
17 |
+
"""
|
18 |
+
# Encode de user-input
|
19 |
+
query_embedding = model.encode(favorite_movie, convert_to_tensor=True)
|
20 |
+
# Bereken cosine similarity met alle films in 'movies.csv'
|
21 |
+
cos_scores = util.cos_sim(query_embedding, movie_embeddings)[0]
|
22 |
+
# Pak de top-5 indices (hoogste scores)
|
23 |
+
top_indices = cos_scores.topk(k=5).indices.tolist()
|
24 |
+
# Geef de corresponderende titels terug
|
25 |
+
recommendations = [movies["title"].iloc[i] for i in top_indices]
|
26 |
+
return recommendations
|
27 |
+
|
28 |
+
# Gradio-interface definieren:
|
29 |
+
iface = gr.Interface(
|
30 |
+
fn=recommend,
|
31 |
+
inputs=gr.Textbox(lines=1, placeholder="Typ hier een filmtitel of omschrijving...", label="Jouw favoriete film"),
|
32 |
+
outputs=gr.Textbox(label="Aanbevolen titels"),
|
33 |
+
title="StreamVibe Recommender",
|
34 |
+
description="Geef je favoriete film of omschrijving, en krijg 5 vergelijkbare titels uit je eigen lijst."
|
35 |
+
)
|
36 |
+
|
37 |
+
if __name__ == "__main__":
|
38 |
+
iface.launch()
|