Spaces:
Runtime error
Runtime error
| # coding:utf-8 | |
| import os | |
| import os.path as osp | |
| import copy | |
| import math | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm | |
| from Utils.ASR.models import ASRCNN | |
| from Utils.JDC.model import JDCNet | |
| from Modules.diffusion.sampler import KDiffusion, LogNormalDistribution | |
| from Modules.diffusion.modules import Transformer1d, StyleTransformer1d | |
| from Modules.diffusion.diffusion import AudioDiffusionConditional | |
| from Modules.discriminators import ( | |
| MultiPeriodDiscriminator, | |
| MultiResSpecDiscriminator, | |
| WavLMDiscriminator, | |
| ) | |
| from munch import Munch | |
| import yaml | |
| import math | |
| import torch | |
| from torch import nn | |
| from torch.nn import functional as F | |
| import commons | |
| import modules | |
| import attentions | |
| from torch.nn import Conv1d, ConvTranspose1d, Conv2d | |
| from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm | |
| from commons import init_weights, get_padding | |
| class LearnedDownSample(nn.Module): | |
| def __init__(self, layer_type, dim_in): | |
| super().__init__() | |
| self.layer_type = layer_type | |
| if self.layer_type == "none": | |
| self.conv = nn.Identity() | |
| elif self.layer_type == "timepreserve": | |
| self.conv = spectral_norm( | |
| nn.Conv2d( | |
| dim_in, | |
| dim_in, | |
| kernel_size=(3, 1), | |
| stride=(2, 1), | |
| groups=dim_in, | |
| padding=(1, 0), | |
| ) | |
| ) | |
| elif self.layer_type == "half": | |
| self.conv = spectral_norm( | |
| nn.Conv2d( | |
| dim_in, | |
| dim_in, | |
| kernel_size=(3, 3), | |
| stride=(2, 2), | |
| groups=dim_in, | |
| padding=1, | |
| ) | |
| ) | |
| else: | |
| raise RuntimeError( | |
| "Got unexpected donwsampletype %s, expected is [none, timepreserve, half]" | |
| % self.layer_type | |
| ) | |
| def forward(self, x): | |
| return self.conv(x) | |
| class LearnedUpSample(nn.Module): | |
| def __init__(self, layer_type, dim_in): | |
| super().__init__() | |
| self.layer_type = layer_type | |
| if self.layer_type == "none": | |
| self.conv = nn.Identity() | |
| elif self.layer_type == "timepreserve": | |
| self.conv = nn.ConvTranspose2d( | |
| dim_in, | |
| dim_in, | |
| kernel_size=(3, 1), | |
| stride=(2, 1), | |
| groups=dim_in, | |
| output_padding=(1, 0), | |
| padding=(1, 0), | |
| ) | |
| elif self.layer_type == "half": | |
| self.conv = nn.ConvTranspose2d( | |
| dim_in, | |
| dim_in, | |
| kernel_size=(3, 3), | |
| stride=(2, 2), | |
| groups=dim_in, | |
| output_padding=1, | |
| padding=1, | |
| ) | |
| else: | |
| raise RuntimeError( | |
| "Got unexpected upsampletype %s, expected is [none, timepreserve, half]" | |
| % self.layer_type | |
| ) | |
| def forward(self, x): | |
| return self.conv(x) | |
| class DownSample(nn.Module): | |
| def __init__(self, layer_type): | |
| super().__init__() | |
| self.layer_type = layer_type | |
| def forward(self, x): | |
| if self.layer_type == "none": | |
| return x | |
| elif self.layer_type == "timepreserve": | |
| return F.avg_pool2d(x, (2, 1)) | |
| elif self.layer_type == "half": | |
| if x.shape[-1] % 2 != 0: | |
| x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1) | |
| return F.avg_pool2d(x, 2) | |
| else: | |
| raise RuntimeError( | |
| "Got unexpected donwsampletype %s, expected is [none, timepreserve, half]" | |
| % self.layer_type | |
| ) | |
| class UpSample(nn.Module): | |
| def __init__(self, layer_type): | |
| super().__init__() | |
| self.layer_type = layer_type | |
| def forward(self, x): | |
| if self.layer_type == "none": | |
| return x | |
| elif self.layer_type == "timepreserve": | |
| return F.interpolate(x, scale_factor=(2, 1), mode="nearest") | |
| elif self.layer_type == "half": | |
| return F.interpolate(x, scale_factor=2, mode="nearest") | |
| else: | |
| raise RuntimeError( | |
| "Got unexpected upsampletype %s, expected is [none, timepreserve, half]" | |
| % self.layer_type | |
| ) | |
| class ResBlk(nn.Module): | |
| def __init__( | |
| self, | |
| dim_in, | |
| dim_out, | |
| actv=nn.LeakyReLU(0.2), | |
| normalize=False, | |
| downsample="none", | |
| ): | |
| super().__init__() | |
| self.actv = actv | |
| self.normalize = normalize | |
| self.downsample = DownSample(downsample) | |
| self.downsample_res = LearnedDownSample(downsample, dim_in) | |
| self.learned_sc = dim_in != dim_out | |
| self._build_weights(dim_in, dim_out) | |
| def _build_weights(self, dim_in, dim_out): | |
| self.conv1 = spectral_norm(nn.Conv2d(dim_in, dim_in, 3, 1, 1)) | |
| self.conv2 = spectral_norm(nn.Conv2d(dim_in, dim_out, 3, 1, 1)) | |
| if self.normalize: | |
| self.norm1 = nn.InstanceNorm2d(dim_in, affine=True) | |
| self.norm2 = nn.InstanceNorm2d(dim_in, affine=True) | |
| if self.learned_sc: | |
| self.conv1x1 = spectral_norm( | |
| nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False) | |
| ) | |
| def _shortcut(self, x): | |
| if self.learned_sc: | |
| x = self.conv1x1(x) | |
| if self.downsample: | |
| x = self.downsample(x) | |
| return x | |
| def _residual(self, x): | |
| if self.normalize: | |
| x = self.norm1(x) | |
| x = self.actv(x) | |
| x = self.conv1(x) | |
| x = self.downsample_res(x) | |
| if self.normalize: | |
| x = self.norm2(x) | |
| x = self.actv(x) | |
| x = self.conv2(x) | |
| return x | |
| def forward(self, x): | |
| x = self._shortcut(x) + self._residual(x) | |
| return x / math.sqrt(2) # unit variance | |
| class StyleEncoder(nn.Module): | |
| def __init__(self, dim_in=48, style_dim=48, max_conv_dim=384): | |
| super().__init__() | |
| blocks = [] | |
| blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))] | |
| repeat_num = 4 | |
| for _ in range(repeat_num): | |
| dim_out = min(dim_in * 2, max_conv_dim) | |
| blocks += [ResBlk(dim_in, dim_out, downsample="half")] | |
| dim_in = dim_out | |
| blocks += [nn.LeakyReLU(0.2)] | |
| blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))] | |
| blocks += [nn.AdaptiveAvgPool2d(1)] | |
| blocks += [nn.LeakyReLU(0.2)] | |
| self.shared = nn.Sequential(*blocks) | |
| self.unshared = nn.Linear(dim_out, style_dim) | |
| def forward(self, x): | |
| h = self.shared(x) | |
| h = h.view(h.size(0), -1) | |
| s = self.unshared(h) | |
| return s | |
| class LinearNorm(torch.nn.Module): | |
| def __init__(self, in_dim, out_dim, bias=True, w_init_gain="linear"): | |
| super(LinearNorm, self).__init__() | |
| self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) | |
| torch.nn.init.xavier_uniform_( | |
| self.linear_layer.weight, gain=torch.nn.init.calculate_gain(w_init_gain) | |
| ) | |
| def forward(self, x): | |
| return self.linear_layer(x) | |
| class Discriminator2d(nn.Module): | |
| def __init__(self, dim_in=48, num_domains=1, max_conv_dim=384, repeat_num=4): | |
| super().__init__() | |
| blocks = [] | |
| blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))] | |
| for lid in range(repeat_num): | |
| dim_out = min(dim_in * 2, max_conv_dim) | |
| blocks += [ResBlk(dim_in, dim_out, downsample="half")] | |
| dim_in = dim_out | |
| blocks += [nn.LeakyReLU(0.2)] | |
| blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))] | |
| blocks += [nn.LeakyReLU(0.2)] | |
| blocks += [nn.AdaptiveAvgPool2d(1)] | |
| blocks += [spectral_norm(nn.Conv2d(dim_out, num_domains, 1, 1, 0))] | |
| self.main = nn.Sequential(*blocks) | |
| def get_feature(self, x): | |
| features = [] | |
| for l in self.main: | |
| x = l(x) | |
| features.append(x) | |
| out = features[-1] | |
| out = out.view(out.size(0), -1) # (batch, num_domains) | |
| return out, features | |
| def forward(self, x): | |
| out, features = self.get_feature(x) | |
| out = out.squeeze() # (batch) | |
| return out, features | |
| class ResBlk1d(nn.Module): | |
| def __init__( | |
| self, | |
| dim_in, | |
| dim_out, | |
| actv=nn.LeakyReLU(0.2), | |
| normalize=False, | |
| downsample="none", | |
| dropout_p=0.2, | |
| ): | |
| super().__init__() | |
| self.actv = actv | |
| self.normalize = normalize | |
| self.downsample_type = downsample | |
| self.learned_sc = dim_in != dim_out | |
| self._build_weights(dim_in, dim_out) | |
| self.dropout_p = dropout_p | |
| if self.downsample_type == "none": | |
| self.pool = nn.Identity() | |
| else: | |
| self.pool = weight_norm( | |
| nn.Conv1d( | |
| dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1 | |
| ) | |
| ) | |
| def _build_weights(self, dim_in, dim_out): | |
| self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_in, 3, 1, 1)) | |
| self.conv2 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1)) | |
| if self.normalize: | |
| self.norm1 = nn.InstanceNorm1d(dim_in, affine=True) | |
| self.norm2 = nn.InstanceNorm1d(dim_in, affine=True) | |
| if self.learned_sc: | |
| self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False)) | |
| def downsample(self, x): | |
| if self.downsample_type == "none": | |
| return x | |
| else: | |
| if x.shape[-1] % 2 != 0: | |
| x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1) | |
| return F.avg_pool1d(x, 2) | |
| def _shortcut(self, x): | |
| if self.learned_sc: | |
| x = self.conv1x1(x) | |
| x = self.downsample(x) | |
| return x | |
| def _residual(self, x): | |
| if self.normalize: | |
| x = self.norm1(x) | |
| x = self.actv(x) | |
| x = F.dropout(x, p=self.dropout_p, training=self.training) | |
| x = self.conv1(x) | |
| x = self.pool(x) | |
| if self.normalize: | |
| x = self.norm2(x) | |
| x = self.actv(x) | |
| x = F.dropout(x, p=self.dropout_p, training=self.training) | |
| x = self.conv2(x) | |
| return x | |
| def forward(self, x): | |
| x = self._shortcut(x) + self._residual(x) | |
| return x / math.sqrt(2) # unit variance | |
| class LayerNorm(nn.Module): | |
| def __init__(self, channels, eps=1e-5): | |
| super().__init__() | |
| self.channels = channels | |
| self.eps = eps | |
| self.gamma = nn.Parameter(torch.ones(channels)) | |
| self.beta = nn.Parameter(torch.zeros(channels)) | |
| def forward(self, x): | |
| x = x.transpose(1, -1) | |
| x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) | |
| return x.transpose(1, -1) | |
| class TextEncoder(nn.Module): | |
| def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)): | |
| super().__init__() | |
| self.embedding = nn.Embedding(n_symbols, channels) | |
| padding = (kernel_size - 1) // 2 | |
| self.cnn = nn.ModuleList() | |
| for _ in range(depth): | |
| self.cnn.append( | |
| nn.Sequential( | |
| weight_norm( | |
| nn.Conv1d( | |
| channels, channels, kernel_size=kernel_size, padding=padding | |
| ) | |
| ), | |
| LayerNorm(channels), | |
| actv, | |
| nn.Dropout(0.2), | |
| ) | |
| ) | |
| # self.cnn = nn.Sequential(*self.cnn) | |
| self.lstm = nn.LSTM( | |
| channels, channels // 2, 1, batch_first=True, bidirectional=True | |
| ) | |
| def forward(self, x, input_lengths, m): | |
| x = self.embedding(x) # [B, T, emb] | |
| x = x.transpose(1, 2) # [B, emb, T] | |
| m = m.to(input_lengths.device).unsqueeze(1) | |
| x.masked_fill_(m, 0.0) | |
| for c in self.cnn: | |
| x = c(x) | |
| x.masked_fill_(m, 0.0) | |
| x = x.transpose(1, 2) # [B, T, chn] | |
| input_lengths = input_lengths.cpu().numpy() | |
| x = nn.utils.rnn.pack_padded_sequence( | |
| x, input_lengths, batch_first=True, enforce_sorted=False | |
| ) | |
| self.lstm.flatten_parameters() | |
| x, _ = self.lstm(x) | |
| x, _ = nn.utils.rnn.pad_packed_sequence(x, batch_first=True) | |
| x = x.transpose(-1, -2) | |
| x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]]) | |
| x_pad[:, :, : x.shape[-1]] = x | |
| x = x_pad.to(x.device) | |
| x.masked_fill_(m, 0.0) | |
| return x | |
| def inference(self, x): | |
| x = self.embedding(x) | |
| x = x.transpose(1, 2) | |
| x = self.cnn(x) | |
| x = x.transpose(1, 2) | |
| self.lstm.flatten_parameters() | |
| x, _ = self.lstm(x) | |
| return x | |
| def length_to_mask(self, lengths): | |
| mask = ( | |
| torch.arange(lengths.max()) | |
| .unsqueeze(0) | |
| .expand(lengths.shape[0], -1) | |
| .type_as(lengths) | |
| ) | |
| mask = torch.gt(mask + 1, lengths.unsqueeze(1)) | |
| return mask | |
| class AdaIN1d(nn.Module): | |
| def __init__(self, style_dim, num_features): | |
| super().__init__() | |
| self.norm = nn.InstanceNorm1d(num_features, affine=False) | |
| self.fc = nn.Linear(style_dim, num_features * 2) | |
| def forward(self, x, s): | |
| h = self.fc(s) | |
| h = h.view(h.size(0), h.size(1), 1) | |
| gamma, beta = torch.chunk(h, chunks=2, dim=1) | |
| return (1 + gamma) * self.norm(x) + beta | |
| class UpSample1d(nn.Module): | |
| def __init__(self, layer_type): | |
| super().__init__() | |
| self.layer_type = layer_type | |
| def forward(self, x): | |
| if self.layer_type == "none": | |
| return x | |
| else: | |
| return F.interpolate(x, scale_factor=2, mode="nearest") | |
| class AdainResBlk1d(nn.Module): | |
| def __init__( | |
| self, | |
| dim_in, | |
| dim_out, | |
| style_dim=64, | |
| actv=nn.LeakyReLU(0.2), | |
| upsample="none", | |
| dropout_p=0.0, | |
| ): | |
| super().__init__() | |
| self.actv = actv | |
| self.upsample_type = upsample | |
| self.upsample = UpSample1d(upsample) | |
| self.learned_sc = dim_in != dim_out | |
| self._build_weights(dim_in, dim_out, style_dim) | |
| self.dropout = nn.Dropout(dropout_p) | |
| if upsample == "none": | |
| self.pool = nn.Identity() | |
| else: | |
| self.pool = weight_norm( | |
| nn.ConvTranspose1d( | |
| dim_in, | |
| dim_in, | |
| kernel_size=3, | |
| stride=2, | |
| groups=dim_in, | |
| padding=1, | |
| output_padding=1, | |
| ) | |
| ) | |
| def _build_weights(self, dim_in, dim_out, style_dim): | |
| self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1)) | |
| self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1)) | |
| self.norm1 = AdaIN1d(style_dim, dim_in) | |
| self.norm2 = AdaIN1d(style_dim, dim_out) | |
| if self.learned_sc: | |
| self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False)) | |
| def _shortcut(self, x): | |
| x = self.upsample(x) | |
| if self.learned_sc: | |
| x = self.conv1x1(x) | |
| return x | |
| def _residual(self, x, s): | |
| x = self.norm1(x, s) | |
| x = self.actv(x) | |
| x = self.pool(x) | |
| x = self.conv1(self.dropout(x)) | |
| x = self.norm2(x, s) | |
| x = self.actv(x) | |
| x = self.conv2(self.dropout(x)) | |
| return x | |
| def forward(self, x, s): | |
| out = self._residual(x, s) | |
| out = (out + self._shortcut(x)) / math.sqrt(2) | |
| return out | |
| class AdaLayerNorm(nn.Module): | |
| def __init__(self, style_dim, channels, eps=1e-5): | |
| super().__init__() | |
| self.channels = channels | |
| self.eps = eps | |
| self.fc = nn.Linear(style_dim, channels * 2) | |
| def forward(self, x, s): | |
| x = x.transpose(-1, -2) | |
| x = x.transpose(1, -1) | |
| h = self.fc(s) | |
| h = h.view(h.size(0), h.size(1), 1) | |
| gamma, beta = torch.chunk(h, chunks=2, dim=1) | |
| gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1) | |
| x = F.layer_norm(x, (self.channels,), eps=self.eps) | |
| x = (1 + gamma) * x + beta | |
| return x.transpose(1, -1).transpose(-1, -2) | |
| class ProsodyPredictor(nn.Module): | |
| def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1): | |
| super().__init__() | |
| self.text_encoder = DurationEncoder( | |
| sty_dim=style_dim, d_model=d_hid, nlayers=nlayers, dropout=dropout | |
| ) | |
| self.lstm = nn.LSTM( | |
| d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True | |
| ) | |
| self.duration_proj = LinearNorm(d_hid, max_dur) | |
| self.shared = nn.LSTM( | |
| d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True | |
| ) | |
| self.F0 = nn.ModuleList() | |
| self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout)) | |
| self.F0.append( | |
| AdainResBlk1d( | |
| d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout | |
| ) | |
| ) | |
| self.F0.append( | |
| AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout) | |
| ) | |
| self.N = nn.ModuleList() | |
| self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout)) | |
| self.N.append( | |
| AdainResBlk1d( | |
| d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout | |
| ) | |
| ) | |
| self.N.append( | |
| AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout) | |
| ) | |
| self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0) | |
| self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0) | |
| def forward(self, texts, style, text_lengths, alignment, m): | |
| d = self.text_encoder(texts, style, text_lengths, m) | |
| batch_size = d.shape[0] | |
| text_size = d.shape[1] | |
| # predict duration | |
| input_lengths = text_lengths.cpu().numpy() | |
| x = nn.utils.rnn.pack_padded_sequence( | |
| d, input_lengths, batch_first=True, enforce_sorted=False | |
| ) | |
| m = m.to(text_lengths.device).unsqueeze(1) | |
| self.lstm.flatten_parameters() | |
| x, _ = self.lstm(x) | |
| x, _ = nn.utils.rnn.pad_packed_sequence(x, batch_first=True) | |
| x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]]) | |
| x_pad[:, : x.shape[1], :] = x | |
| x = x_pad.to(x.device) | |
| duration = self.duration_proj( | |
| nn.functional.dropout(x, 0.5, training=self.training) | |
| ) | |
| en = d.transpose(-1, -2) @ alignment | |
| return duration.squeeze(-1), en | |
| def F0Ntrain(self, x, s): | |
| x, _ = self.shared(x.transpose(-1, -2)) | |
| F0 = x.transpose(-1, -2) | |
| for block in self.F0: | |
| F0 = block(F0, s) | |
| F0 = self.F0_proj(F0) | |
| N = x.transpose(-1, -2) | |
| for block in self.N: | |
| N = block(N, s) | |
| N = self.N_proj(N) | |
| return F0.squeeze(1), N.squeeze(1) | |
| def length_to_mask(self, lengths): | |
| mask = ( | |
| torch.arange(lengths.max()) | |
| .unsqueeze(0) | |
| .expand(lengths.shape[0], -1) | |
| .type_as(lengths) | |
| ) | |
| mask = torch.gt(mask + 1, lengths.unsqueeze(1)) | |
| return mask | |
| class DurationEncoder(nn.Module): | |
| def __init__(self, sty_dim, d_model, nlayers, dropout=0.1): | |
| super().__init__() | |
| self.lstms = nn.ModuleList() | |
| for _ in range(nlayers): | |
| self.lstms.append( | |
| nn.LSTM( | |
| d_model + sty_dim, | |
| d_model // 2, | |
| num_layers=1, | |
| batch_first=True, | |
| bidirectional=True, | |
| dropout=dropout, | |
| ) | |
| ) | |
| self.lstms.append(AdaLayerNorm(sty_dim, d_model)) | |
| self.dropout = dropout | |
| self.d_model = d_model | |
| self.sty_dim = sty_dim | |
| def forward(self, x, style, text_lengths, m): | |
| masks = m.to(text_lengths.device) | |
| x = x.permute(2, 0, 1) | |
| s = style.expand(x.shape[0], x.shape[1], -1) | |
| x = torch.cat([x, s], axis=-1) | |
| x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0) | |
| x = x.transpose(0, 1) | |
| input_lengths = text_lengths.cpu().numpy() | |
| x = x.transpose(-1, -2) | |
| for block in self.lstms: | |
| if isinstance(block, AdaLayerNorm): | |
| x = block(x.transpose(-1, -2), style).transpose(-1, -2) | |
| x = torch.cat([x, s.permute(1, -1, 0)], axis=1) | |
| x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0) | |
| else: | |
| x = x.transpose(-1, -2) | |
| x = nn.utils.rnn.pack_padded_sequence( | |
| x, input_lengths, batch_first=True, enforce_sorted=False | |
| ) | |
| block.flatten_parameters() | |
| x, _ = block(x) | |
| x, _ = nn.utils.rnn.pad_packed_sequence(x, batch_first=True) | |
| x = F.dropout(x, p=self.dropout, training=self.training) | |
| x = x.transpose(-1, -2) | |
| x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]]) | |
| x_pad[:, :, : x.shape[-1]] = x | |
| x = x_pad.to(x.device) | |
| return x.transpose(-1, -2) | |
| def inference(self, x, style): | |
| x = self.embedding(x.transpose(-1, -2)) * math.sqrt(self.d_model) | |
| style = style.expand(x.shape[0], x.shape[1], -1) | |
| x = torch.cat([x, style], axis=-1) | |
| src = self.pos_encoder(x) | |
| output = self.transformer_encoder(src).transpose(0, 1) | |
| return output | |
| def length_to_mask(self, lengths): | |
| mask = ( | |
| torch.arange(lengths.max()) | |
| .unsqueeze(0) | |
| .expand(lengths.shape[0], -1) | |
| .type_as(lengths) | |
| ) | |
| mask = torch.gt(mask + 1, lengths.unsqueeze(1)) | |
| return mask | |
| def load_F0_models(path): | |
| # load F0 model | |
| F0_model = JDCNet(num_class=1, seq_len=192) | |
| params = torch.load(path, map_location="cpu")["net"] | |
| F0_model.load_state_dict(params) | |
| _ = F0_model.train() | |
| return F0_model | |
| def load_ASR_models(ASR_MODEL_PATH, ASR_MODEL_CONFIG): | |
| # load ASR model | |
| def _load_config(path): | |
| with open(path) as f: | |
| config = yaml.safe_load(f) | |
| model_config = config["model_params"] | |
| return model_config | |
| def _load_model(model_config, model_path): | |
| model = ASRCNN(**model_config) | |
| params = torch.load(model_path, map_location="cpu")["model"] | |
| model.load_state_dict(params) | |
| return model | |
| asr_model_config = _load_config(ASR_MODEL_CONFIG) | |
| asr_model = _load_model(asr_model_config, ASR_MODEL_PATH) | |
| _ = asr_model.train() | |
| return asr_model | |
| def build_model(args, text_aligner, pitch_extractor, bert): | |
| assert args.decoder.type in ["istftnet", "hifigan"], "Decoder type unknown" | |
| if args.decoder.type == "istftnet": | |
| from Modules.istftnet import Decoder | |
| decoder = Decoder( | |
| dim_in=args.hidden_dim, | |
| style_dim=args.style_dim, | |
| dim_out=args.n_mels, | |
| resblock_kernel_sizes=args.decoder.resblock_kernel_sizes, | |
| upsample_rates=args.decoder.upsample_rates, | |
| upsample_initial_channel=args.decoder.upsample_initial_channel, | |
| resblock_dilation_sizes=args.decoder.resblock_dilation_sizes, | |
| upsample_kernel_sizes=args.decoder.upsample_kernel_sizes, | |
| gen_istft_n_fft=args.decoder.gen_istft_n_fft, | |
| gen_istft_hop_size=args.decoder.gen_istft_hop_size, | |
| ) | |
| else: | |
| from Modules.hifigan import Decoder | |
| decoder = Decoder( | |
| dim_in=args.hidden_dim, | |
| style_dim=args.style_dim, | |
| dim_out=args.n_mels, | |
| resblock_kernel_sizes=args.decoder.resblock_kernel_sizes, | |
| upsample_rates=args.decoder.upsample_rates, | |
| upsample_initial_channel=args.decoder.upsample_initial_channel, | |
| resblock_dilation_sizes=args.decoder.resblock_dilation_sizes, | |
| upsample_kernel_sizes=args.decoder.upsample_kernel_sizes, | |
| ) | |
| text_encoder = TextEncoder( | |
| channels=args.hidden_dim, | |
| kernel_size=5, | |
| depth=args.n_layer, | |
| n_symbols=args.n_token, | |
| ) | |
| predictor = ProsodyPredictor( | |
| style_dim=args.style_dim, | |
| d_hid=args.hidden_dim, | |
| nlayers=args.n_layer, | |
| max_dur=args.max_dur, | |
| dropout=args.dropout, | |
| ) | |
| style_encoder = StyleEncoder( | |
| dim_in=args.dim_in, style_dim=args.style_dim, max_conv_dim=args.hidden_dim | |
| ) # acoustic style encoder | |
| predictor_encoder = StyleEncoder( | |
| dim_in=args.dim_in, style_dim=args.style_dim, max_conv_dim=args.hidden_dim | |
| ) # prosodic style encoder | |
| # define diffusion model | |
| if args.multispeaker: | |
| transformer = StyleTransformer1d( | |
| channels=args.style_dim * 2, | |
| context_embedding_features=bert.config.hidden_size, | |
| context_features=args.style_dim * 2, | |
| **args.diffusion.transformer | |
| ) | |
| else: | |
| transformer = Transformer1d( | |
| channels=args.style_dim * 2, | |
| context_embedding_features=bert.config.hidden_size, | |
| **args.diffusion.transformer | |
| ) | |
| diffusion = AudioDiffusionConditional( | |
| in_channels=1, | |
| embedding_max_length=bert.config.max_position_embeddings, | |
| embedding_features=bert.config.hidden_size, | |
| embedding_mask_proba=args.diffusion.embedding_mask_proba, # Conditional dropout of batch elements, | |
| channels=args.style_dim * 2, | |
| context_features=args.style_dim * 2, | |
| ) | |
| diffusion.diffusion = KDiffusion( | |
| net=diffusion.unet, | |
| sigma_distribution=LogNormalDistribution( | |
| mean=args.diffusion.dist.mean, std=args.diffusion.dist.std | |
| ), | |
| sigma_data=args.diffusion.dist.sigma_data, # a placeholder, will be changed dynamically when start training diffusion model | |
| dynamic_threshold=0.0, | |
| ) | |
| diffusion.diffusion.net = transformer | |
| diffusion.unet = transformer | |
| nets = Munch( | |
| bert=bert, | |
| bert_encoder=nn.Linear(bert.config.hidden_size, args.hidden_dim), | |
| predictor=predictor, | |
| decoder=decoder, | |
| text_encoder=text_encoder, | |
| predictor_encoder=predictor_encoder, | |
| style_encoder=style_encoder, | |
| diffusion=diffusion, | |
| text_aligner=text_aligner, | |
| pitch_extractor=pitch_extractor, | |
| mpd=MultiPeriodDiscriminator(), | |
| msd=MultiResSpecDiscriminator(), | |
| # slm discriminator head | |
| wd=WavLMDiscriminator( | |
| args.slm.hidden, args.slm.nlayers, args.slm.initial_channel | |
| ), | |
| ) | |
| return nets | |
| def load_checkpoint(model, optimizer, path, load_only_params=True, ignore_modules=[]): | |
| state = torch.load(path, map_location="cpu") | |
| params = state["net"] | |
| for key in model: | |
| if key in params and key not in ignore_modules: | |
| print("%s loaded" % key) | |
| model[key].load_state_dict(params[key], strict=False) | |
| _ = [model[key].eval() for key in model] | |
| if not load_only_params: | |
| epoch = state["epoch"] | |
| iters = state["iters"] | |
| optimizer.load_state_dict(state["optimizer"]) | |
| else: | |
| epoch = 0 | |
| iters = 0 | |
| return model, optimizer, epoch, iters | |
| class TextEncoderOpenVoice(nn.Module): | |
| def __init__(self, | |
| n_vocab, | |
| out_channels, | |
| hidden_channels, | |
| filter_channels, | |
| n_heads, | |
| n_layers, | |
| kernel_size, | |
| p_dropout): | |
| super().__init__() | |
| self.n_vocab = n_vocab | |
| self.out_channels = out_channels | |
| self.hidden_channels = hidden_channels | |
| self.filter_channels = filter_channels | |
| self.n_heads = n_heads | |
| self.n_layers = n_layers | |
| self.kernel_size = kernel_size | |
| self.p_dropout = p_dropout | |
| self.emb = nn.Embedding(n_vocab, hidden_channels) | |
| nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5) | |
| self.encoder = attentions.Encoder( | |
| hidden_channels, | |
| filter_channels, | |
| n_heads, | |
| n_layers, | |
| kernel_size, | |
| p_dropout) | |
| self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1) | |
| def forward(self, x, x_lengths): | |
| x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h] | |
| x = torch.transpose(x, 1, -1) # [b, h, t] | |
| x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) | |
| x = self.encoder(x * x_mask, x_mask) | |
| stats = self.proj(x) * x_mask | |
| m, logs = torch.split(stats, self.out_channels, dim=1) | |
| return x, m, logs, x_mask | |
| class DurationPredictor(nn.Module): | |
| def __init__( | |
| self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0 | |
| ): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| self.filter_channels = filter_channels | |
| self.kernel_size = kernel_size | |
| self.p_dropout = p_dropout | |
| self.gin_channels = gin_channels | |
| self.drop = nn.Dropout(p_dropout) | |
| self.conv_1 = nn.Conv1d( | |
| in_channels, filter_channels, kernel_size, padding=kernel_size // 2 | |
| ) | |
| self.norm_1 = modules.LayerNorm(filter_channels) | |
| self.conv_2 = nn.Conv1d( | |
| filter_channels, filter_channels, kernel_size, padding=kernel_size // 2 | |
| ) | |
| self.norm_2 = modules.LayerNorm(filter_channels) | |
| self.proj = nn.Conv1d(filter_channels, 1, 1) | |
| if gin_channels != 0: | |
| self.cond = nn.Conv1d(gin_channels, in_channels, 1) | |
| def forward(self, x, x_mask, g=None): | |
| x = torch.detach(x) | |
| if g is not None: | |
| g = torch.detach(g) | |
| x = x + self.cond(g) | |
| x = self.conv_1(x * x_mask) | |
| x = torch.relu(x) | |
| x = self.norm_1(x) | |
| x = self.drop(x) | |
| x = self.conv_2(x * x_mask) | |
| x = torch.relu(x) | |
| x = self.norm_2(x) | |
| x = self.drop(x) | |
| x = self.proj(x * x_mask) | |
| return x * x_mask | |
| class StochasticDurationPredictor(nn.Module): | |
| def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0): | |
| super().__init__() | |
| filter_channels = in_channels # it needs to be removed from future version. | |
| self.in_channels = in_channels | |
| self.filter_channels = filter_channels | |
| self.kernel_size = kernel_size | |
| self.p_dropout = p_dropout | |
| self.n_flows = n_flows | |
| self.gin_channels = gin_channels | |
| self.log_flow = modules.Log() | |
| self.flows = nn.ModuleList() | |
| self.flows.append(modules.ElementwiseAffine(2)) | |
| for i in range(n_flows): | |
| self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)) | |
| self.flows.append(modules.Flip()) | |
| self.post_pre = nn.Conv1d(1, filter_channels, 1) | |
| self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1) | |
| self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout) | |
| self.post_flows = nn.ModuleList() | |
| self.post_flows.append(modules.ElementwiseAffine(2)) | |
| for i in range(4): | |
| self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)) | |
| self.post_flows.append(modules.Flip()) | |
| self.pre = nn.Conv1d(in_channels, filter_channels, 1) | |
| self.proj = nn.Conv1d(filter_channels, filter_channels, 1) | |
| self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout) | |
| if gin_channels != 0: | |
| self.cond = nn.Conv1d(gin_channels, filter_channels, 1) | |
| def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0): | |
| x = torch.detach(x) | |
| x = self.pre(x) | |
| if g is not None: | |
| g = torch.detach(g) | |
| x = x + self.cond(g) | |
| x = self.convs(x, x_mask) | |
| x = self.proj(x) * x_mask | |
| if not reverse: | |
| flows = self.flows | |
| assert w is not None | |
| logdet_tot_q = 0 | |
| h_w = self.post_pre(w) | |
| h_w = self.post_convs(h_w, x_mask) | |
| h_w = self.post_proj(h_w) * x_mask | |
| e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask | |
| z_q = e_q | |
| for flow in self.post_flows: | |
| z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w)) | |
| logdet_tot_q += logdet_q | |
| z_u, z1 = torch.split(z_q, [1, 1], 1) | |
| u = torch.sigmoid(z_u) * x_mask | |
| z0 = (w - u) * x_mask | |
| logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2]) | |
| logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q | |
| logdet_tot = 0 | |
| z0, logdet = self.log_flow(z0, x_mask) | |
| logdet_tot += logdet | |
| z = torch.cat([z0, z1], 1) | |
| for flow in flows: | |
| z, logdet = flow(z, x_mask, g=x, reverse=reverse) | |
| logdet_tot = logdet_tot + logdet | |
| nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot | |
| return nll + logq # [b] | |
| else: | |
| flows = list(reversed(self.flows)) | |
| flows = flows[:-2] + [flows[-1]] # remove a useless vflow | |
| z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale | |
| for flow in flows: | |
| z = flow(z, x_mask, g=x, reverse=reverse) | |
| z0, z1 = torch.split(z, [1, 1], 1) | |
| logw = z0 | |
| return logw | |
| class PosteriorEncoder(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels, | |
| out_channels, | |
| hidden_channels, | |
| kernel_size, | |
| dilation_rate, | |
| n_layers, | |
| gin_channels=0, | |
| ): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| self.out_channels = out_channels | |
| self.hidden_channels = hidden_channels | |
| self.kernel_size = kernel_size | |
| self.dilation_rate = dilation_rate | |
| self.n_layers = n_layers | |
| self.gin_channels = gin_channels | |
| self.pre = nn.Conv1d(in_channels, hidden_channels, 1) | |
| self.enc = modules.WN( | |
| hidden_channels, | |
| kernel_size, | |
| dilation_rate, | |
| n_layers, | |
| gin_channels=gin_channels, | |
| ) | |
| self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) | |
| def forward(self, x, x_lengths, g=None, tau=1.0): | |
| x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to( | |
| x.dtype | |
| ) | |
| x = self.pre(x) * x_mask | |
| x = self.enc(x, x_mask, g=g) | |
| stats = self.proj(x) * x_mask | |
| m, logs = torch.split(stats, self.out_channels, dim=1) | |
| z = (m + torch.randn_like(m) * tau * torch.exp(logs)) * x_mask | |
| return z, m, logs, x_mask | |
| class Generator(torch.nn.Module): | |
| def __init__( | |
| self, | |
| initial_channel, | |
| resblock, | |
| resblock_kernel_sizes, | |
| resblock_dilation_sizes, | |
| upsample_rates, | |
| upsample_initial_channel, | |
| upsample_kernel_sizes, | |
| gin_channels=0, | |
| ): | |
| super(Generator, self).__init__() | |
| self.num_kernels = len(resblock_kernel_sizes) | |
| self.num_upsamples = len(upsample_rates) | |
| self.conv_pre = Conv1d( | |
| initial_channel, upsample_initial_channel, 7, 1, padding=3 | |
| ) | |
| resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2 | |
| self.ups = nn.ModuleList() | |
| for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): | |
| self.ups.append( | |
| weight_norm( | |
| ConvTranspose1d( | |
| upsample_initial_channel // (2**i), | |
| upsample_initial_channel // (2 ** (i + 1)), | |
| k, | |
| u, | |
| padding=(k - u) // 2, | |
| ) | |
| ) | |
| ) | |
| self.resblocks = nn.ModuleList() | |
| for i in range(len(self.ups)): | |
| ch = upsample_initial_channel // (2 ** (i + 1)) | |
| for j, (k, d) in enumerate( | |
| zip(resblock_kernel_sizes, resblock_dilation_sizes) | |
| ): | |
| self.resblocks.append(resblock(ch, k, d)) | |
| self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) | |
| self.ups.apply(init_weights) | |
| if gin_channels != 0: | |
| self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) | |
| def forward(self, x, g=None): | |
| x = self.conv_pre(x) | |
| if g is not None: | |
| x = x + self.cond(g) | |
| for i in range(self.num_upsamples): | |
| x = F.leaky_relu(x, modules.LRELU_SLOPE) | |
| x = self.ups[i](x) | |
| xs = None | |
| for j in range(self.num_kernels): | |
| if xs is None: | |
| xs = self.resblocks[i * self.num_kernels + j](x) | |
| else: | |
| xs += self.resblocks[i * self.num_kernels + j](x) | |
| x = xs / self.num_kernels | |
| x = F.leaky_relu(x) | |
| x = self.conv_post(x) | |
| x = torch.tanh(x) | |
| return x | |
| def remove_weight_norm(self): | |
| print("Removing weight norm...") | |
| for layer in self.ups: | |
| remove_weight_norm(layer) | |
| for layer in self.resblocks: | |
| layer.remove_weight_norm() | |
| class ReferenceEncoder(nn.Module): | |
| """ | |
| inputs --- [N, Ty/r, n_mels*r] mels | |
| outputs --- [N, ref_enc_gru_size] | |
| """ | |
| def __init__(self, spec_channels, gin_channels=0, layernorm=True): | |
| super().__init__() | |
| self.spec_channels = spec_channels | |
| ref_enc_filters = [32, 32, 64, 64, 128, 128] | |
| K = len(ref_enc_filters) | |
| filters = [1] + ref_enc_filters | |
| convs = [ | |
| weight_norm( | |
| nn.Conv2d( | |
| in_channels=filters[i], | |
| out_channels=filters[i + 1], | |
| kernel_size=(3, 3), | |
| stride=(2, 2), | |
| padding=(1, 1), | |
| ) | |
| ) | |
| for i in range(K) | |
| ] | |
| self.convs = nn.ModuleList(convs) | |
| out_channels = self.calculate_channels(spec_channels, 3, 2, 1, K) | |
| self.gru = nn.GRU( | |
| input_size=ref_enc_filters[-1] * out_channels, | |
| hidden_size=256 // 2, | |
| batch_first=True, | |
| ) | |
| self.proj = nn.Linear(128, gin_channels) | |
| if layernorm: | |
| self.layernorm = nn.LayerNorm(self.spec_channels) | |
| else: | |
| self.layernorm = None | |
| def forward(self, inputs, mask=None): | |
| N = inputs.size(0) | |
| out = inputs.view(N, 1, -1, self.spec_channels) # [N, 1, Ty, n_freqs] | |
| if self.layernorm is not None: | |
| out = self.layernorm(out) | |
| for conv in self.convs: | |
| out = conv(out) | |
| # out = wn(out) | |
| out = F.relu(out) # [N, 128, Ty//2^K, n_mels//2^K] | |
| out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K] | |
| T = out.size(1) | |
| N = out.size(0) | |
| out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K] | |
| self.gru.flatten_parameters() | |
| memory, out = self.gru(out) # out --- [1, N, 128] | |
| return self.proj(out.squeeze(0)) | |
| def calculate_channels(self, L, kernel_size, stride, pad, n_convs): | |
| for i in range(n_convs): | |
| L = (L - kernel_size + 2 * pad) // stride + 1 | |
| return L | |
| class ResidualCouplingBlock(nn.Module): | |
| def __init__(self, | |
| channels, | |
| hidden_channels, | |
| kernel_size, | |
| dilation_rate, | |
| n_layers, | |
| n_flows=4, | |
| gin_channels=0): | |
| super().__init__() | |
| self.channels = channels | |
| self.hidden_channels = hidden_channels | |
| self.kernel_size = kernel_size | |
| self.dilation_rate = dilation_rate | |
| self.n_layers = n_layers | |
| self.n_flows = n_flows | |
| self.gin_channels = gin_channels | |
| self.flows = nn.ModuleList() | |
| for i in range(n_flows): | |
| self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True)) | |
| self.flows.append(modules.Flip()) | |
| def forward(self, x, x_mask, g=None, reverse=False): | |
| if not reverse: | |
| for flow in self.flows: | |
| x, _ = flow(x, x_mask, g=g, reverse=reverse) | |
| else: | |
| for flow in reversed(self.flows): | |
| x = flow(x, x_mask, g=g, reverse=reverse) | |
| return x | |
| class SynthesizerTrn(nn.Module): | |
| """ | |
| Synthesizer for Training | |
| """ | |
| def __init__( | |
| self, | |
| n_vocab, | |
| spec_channels, | |
| inter_channels, | |
| hidden_channels, | |
| filter_channels, | |
| n_heads, | |
| n_layers, | |
| kernel_size, | |
| p_dropout, | |
| resblock, | |
| resblock_kernel_sizes, | |
| resblock_dilation_sizes, | |
| upsample_rates, | |
| upsample_initial_channel, | |
| upsample_kernel_sizes, | |
| n_speakers=256, | |
| gin_channels=256, | |
| **kwargs | |
| ): | |
| super().__init__() | |
| self.dec = Generator( | |
| inter_channels, | |
| resblock, | |
| resblock_kernel_sizes, | |
| resblock_dilation_sizes, | |
| upsample_rates, | |
| upsample_initial_channel, | |
| upsample_kernel_sizes, | |
| gin_channels=gin_channels, | |
| ) | |
| self.enc_q = PosteriorEncoder( | |
| spec_channels, | |
| inter_channels, | |
| hidden_channels, | |
| 5, | |
| 1, | |
| 16, | |
| gin_channels=gin_channels, | |
| ) | |
| self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels) | |
| self.n_speakers = n_speakers | |
| if n_speakers == 0: | |
| self.ref_enc = ReferenceEncoder(spec_channels, gin_channels) | |
| else: | |
| self.enc_p = TextEncoderOpenVoice(n_vocab, | |
| inter_channels, | |
| hidden_channels, | |
| filter_channels, | |
| n_heads, | |
| n_layers, | |
| kernel_size, | |
| p_dropout) | |
| self.sdp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels) | |
| self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels) | |
| self.emb_g = nn.Embedding(n_speakers, gin_channels) | |
| def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., sdp_ratio=0.2, max_len=None): | |
| x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths) | |
| if self.n_speakers > 0: | |
| g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1] | |
| else: | |
| g = None | |
| logw = self.sdp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w) * sdp_ratio \ | |
| + self.dp(x, x_mask, g=g) * (1 - sdp_ratio) | |
| w = torch.exp(logw) * x_mask * length_scale | |
| w_ceil = torch.ceil(w) | |
| y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long() | |
| y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype) | |
| attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1) | |
| attn = commons.generate_path(w_ceil, attn_mask) | |
| m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t'] | |
| logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t'] | |
| z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale | |
| z = self.flow(z_p, y_mask, g=g, reverse=True) | |
| o = self.dec((z * y_mask)[:,:,:max_len], g=g) | |
| return o, attn, y_mask, (z, z_p, m_p, logs_p) | |
| def voice_conversion(self, y, y_lengths, sid_src, sid_tgt, tau=1.0): | |
| g_src = sid_src | |
| g_tgt = sid_tgt | |
| z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src, tau=tau) | |
| z_p = self.flow(z, y_mask, g=g_src) | |
| z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True) | |
| o_hat = self.dec(z_hat * y_mask, g=g_tgt) | |
| return o_hat, y_mask, (z, z_p, z_hat) | |