Spaces:
Running
Running
""" | |
Gradio demo for UI‑TARS 1.5‑7B (image‑text‑to‑text) on Hugging Face Spaces. | |
Save this file as **app.py** and add a *requirements.txt* with the packages | |
listed below. Then create a new **Python** Space, upload both files and | |
commit — the Space will build and serve the app automatically. | |
requirements.txt (suggested versions) | |
------------------------------------- | |
transformers==4.41.0 | |
accelerate>=0.29.0 | |
torch>=2.2 | |
sentencepiece # needed for many multilingual models | |
bitsandbytes # optional: enables 4‑bit quantization if Space has GPU | |
pillow | |
gradio>=4.33 | |
""" | |
from __future__ import annotations | |
from typing import List, Dict, Any | |
import gradio as gr | |
from PIL import Image | |
from transformers import pipeline | |
import base64 | |
def load_model(): | |
"""Load the UI‑TARS multimodal pipeline once at startup.""" | |
print("Loading UI‑TARS 1.5‑7B… this may take a while the first time.") | |
return pipeline( | |
"image-text-to-text", | |
model="ByteDance-Seed/UI-TARS-1.5-7B", | |
device_map="auto", # automatically use GPU if available | |
) | |
pipe = load_model() | |
def answer_question(image: Image.Image, question: str) -> str: | |
"""Run the model on the provided image & question and return its answer.""" | |
if image is None or not question.strip(): | |
return "Please supply **both** an image and a question." | |
base64_image = base64.b64encode(image.tobytes()).decode('utf-8') | |
# Compose a messages list in the expected multimodal chat format. | |
messages: List[Dict[str, Any]] = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": f"You are a GUI agent. You are given a task and your action history, with screenshots. You need to perform the next action to complete the task. \n\n## Output Format\n```\nThought: ...\nAction: ...\n```\n\n## Action Space\n\nclick(start_box='<|box_start|>(x1, y1)<|box_end|>')\nleft_double(start_box='<|box_start|>(x1, y1)<|box_end|>')\nright_single(start_box='<|box_start|>(x1, y1)<|box_end|>')\ndrag(start_box='<|box_start|>(x1, y1)<|box_end|>', end_box='<|box_start|>(x3, y3)<|box_end|>')\nhotkey(key='')\ntype(content='') #If you want to submit your input, use \"\\n\" at the end of `content`.\nscroll(start_box='<|box_start|>(x1, y1)<|box_end|>', direction='down or up or right or left')\nwait() #Sleep for 5s and take a screenshot to check for any changes.\nfinished(content='xxx') # Use escape characters \\', \\\", and \\n in content part to ensure we can parse the content in normal python string format.\n\n\n## Note\n- Use Chinese in `Thought` part.\n- Write a small plan and finally summarize your next action (with its target element) in one sentence in `Thought` part.\n\n## User Instruction\n{question.strip()}"}, | |
], | |
}, | |
{ | |
"role":"user", | |
"content": [ | |
{"type": "image_url", | |
"image_url": base64_image}, | |
], | |
} | |
] | |
# The pipeline returns a list with one dict when `messages` is passed via | |
# the `text` keyword. We extract the generated text robustly. | |
outputs = pipe(text=messages) | |
if isinstance(outputs, list): | |
first = outputs[0] | |
if isinstance(first, dict) and "generated_text" in first: | |
return first["generated_text"].strip() | |
return str(first) | |
return str(outputs) | |
demo = gr.Interface( | |
fn=answer_question, | |
inputs=[ | |
gr.Image(type="pil", label="Upload image"), | |
gr.Textbox(label="Ask a question about the image", placeholder="e.g. What animal is on the candy?"), | |
], | |
outputs=gr.Textbox(label="UI‑TARS answer"), | |
title="UI‑TARS 1.5‑7B – Visual Q&A", | |
description=( | |
"Upload an image and ask a question. The **UI‑TARS 1.5‑7B** model will " | |
"answer based on the visual content. Runs completely on‑device in this Space." | |
), | |
examples=[ | |
[ | |
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/p-blog/candy.JPG", | |
"What animal is on the candy?", | |
] | |
], | |
cache_examples=True, | |
allow_flagging="never", | |
) | |
if __name__ == "__main__": | |
# Spaces automatically call `demo.launch()`, but running locally this | |
# guard lets you execute `python app.py` for quick tests. | |
demo.launch() | |