Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -11,10 +11,30 @@ from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
|
|
11 |
from qwen_vl_utils import process_vision_info # include this file in your repo if not pip-installable
|
12 |
|
13 |
# ---- model & processor loaded on CPU ----
|
|
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
|
20 |
def draw_point(image: Image.Image, point=None, radius: int = 5):
|
@@ -39,38 +59,7 @@ def navigate(screenshot, task: str, platform: str, history):
|
|
39 |
history (list | str | None): Previous messages list. Accepts either an
|
40 |
actual Python list (via gr.JSON) or a JSON/Pythonβliteral string.
|
41 |
"""
|
42 |
-
|
43 |
-
# ------- on-demand model / processor load -------------------------
|
44 |
-
if _MODEL is None:
|
45 |
-
from transformers import BitsAndBytesConfig
|
46 |
-
|
47 |
-
# 4-bit quantisation (~6 GB on H200)
|
48 |
-
bnb_cfg = BitsAndBytesConfig(
|
49 |
-
load_in_4bit=True,
|
50 |
-
bnb_4bit_compute_dtype=torch.float16,
|
51 |
-
bnb_4bit_use_double_quant=True,
|
52 |
-
)
|
53 |
-
|
54 |
-
_MODEL = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
55 |
-
"ByteDance-Seed/UI-TARS-1.5-7B",
|
56 |
-
quantization_config=bnb_cfg,
|
57 |
-
device_map="auto",
|
58 |
-
torch_dtype=torch.float16,
|
59 |
-
low_cpu_mem_usage=True,
|
60 |
-
)
|
61 |
-
|
62 |
-
_PROCESSOR = AutoProcessor.from_pretrained(
|
63 |
-
"ByteDance-Seed/UI-TARS-1.5-7B",
|
64 |
-
size={"shortest_edge": 512, "longest_edge": 1344}, # sane res
|
65 |
-
use_fast=True,
|
66 |
-
)
|
67 |
-
|
68 |
-
# use mem-efficient attention kernels
|
69 |
-
torch.backends.cuda.enable_flash_sdp(False)
|
70 |
-
torch.backends.cuda.enable_mem_efficient_sdp(True)
|
71 |
-
|
72 |
-
model = _MODEL
|
73 |
-
processor = _PROCESSOR
|
74 |
|
75 |
# βββββββββββββββββββββ normalise history input ββββββββββββββββββββββββββ
|
76 |
try:
|
@@ -139,11 +128,6 @@ def navigate(screenshot, task: str, platform: str, history):
|
|
139 |
pass
|
140 |
|
141 |
return screenshot, raw_out, messages
|
142 |
-
|
143 |
-
finally: # β always executed
|
144 |
-
torch.cuda.empty_cache() # free unused blocks
|
145 |
-
torch.cuda.ipc_collect() # defrag for next call
|
146 |
-
|
147 |
|
148 |
# ββββββββββββββββββββββββββ Gradio interface βββββββββββββββββββββββββββββββ
|
149 |
|
|
|
11 |
from qwen_vl_utils import process_vision_info # include this file in your repo if not pip-installable
|
12 |
|
13 |
# ---- model & processor loaded on CPU ----
|
14 |
+
from transformers import BitsAndBytesConfig
|
15 |
|
16 |
+
# 4-bit quantisation (~6 GB on H200)
|
17 |
+
bnb_cfg = BitsAndBytesConfig(
|
18 |
+
load_in_4bit=True,
|
19 |
+
bnb_4bit_compute_dtype=torch.float16,
|
20 |
+
bnb_4bit_use_double_quant=True,
|
21 |
+
)
|
22 |
+
|
23 |
+
_MODEL = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
24 |
+
"ByteDance-Seed/UI-TARS-1.5-7B",
|
25 |
+
quantization_config=bnb_cfg,
|
26 |
+
device_map="auto",
|
27 |
+
torch_dtype=torch.float16
|
28 |
+
)
|
29 |
+
|
30 |
+
_PROCESSOR = AutoProcessor.from_pretrained(
|
31 |
+
"ByteDance-Seed/UI-TARS-1.5-7B",
|
32 |
+
size={"shortest_edge": 512, "longest_edge": 1344}, # sane res
|
33 |
+
use_fast=True,
|
34 |
+
)
|
35 |
+
|
36 |
+
model = _MODEL
|
37 |
+
processor = _PROCESSOR
|
38 |
|
39 |
|
40 |
def draw_point(image: Image.Image, point=None, radius: int = 5):
|
|
|
59 |
history (list | str | None): Previous messages list. Accepts either an
|
60 |
actual Python list (via gr.JSON) or a JSON/Pythonβliteral string.
|
61 |
"""
|
62 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
# βββββββββββββββββββββ normalise history input ββββββββββββββββββββββββββ
|
65 |
try:
|
|
|
128 |
pass
|
129 |
|
130 |
return screenshot, raw_out, messages
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
# ββββββββββββββββββββββββββ Gradio interface βββββββββββββββββββββββββββββββ
|
133 |
|