Spaces:
Running
Running
Commit
·
cf3d408
1
Parent(s):
0863035
code added
Browse files- app.py +103 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Gradio demo for UI‑TARS 1.5‑7B (image‑text‑to‑text) on Hugging Face Spaces.
|
3 |
+
Save this file as **app.py** and add a *requirements.txt* with the packages
|
4 |
+
listed below. Then create a new **Python** Space, upload both files and
|
5 |
+
commit — the Space will build and serve the app automatically.
|
6 |
+
|
7 |
+
requirements.txt (suggested versions)
|
8 |
+
-------------------------------------
|
9 |
+
transformers==4.41.0
|
10 |
+
accelerate>=0.29.0
|
11 |
+
torch>=2.2
|
12 |
+
sentencepiece # needed for many multilingual models
|
13 |
+
bitsandbytes # optional: enables 4‑bit quantization if Space has GPU
|
14 |
+
pillow
|
15 |
+
gradio>=4.33
|
16 |
+
"""
|
17 |
+
|
18 |
+
from __future__ import annotations
|
19 |
+
|
20 |
+
from typing import List, Dict, Any
|
21 |
+
|
22 |
+
import gradio as gr
|
23 |
+
from PIL import Image
|
24 |
+
from transformers import pipeline
|
25 |
+
import base64
|
26 |
+
|
27 |
+
def load_model():
|
28 |
+
"""Load the UI‑TARS multimodal pipeline once at startup."""
|
29 |
+
print("Loading UI‑TARS 1.5‑7B… this may take a while the first time.")
|
30 |
+
return pipeline(
|
31 |
+
"image-text-to-text",
|
32 |
+
model="ByteDance-Seed/UI-TARS-1.5-7B",
|
33 |
+
device_map="auto", # automatically use GPU if available
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
pipe = load_model()
|
38 |
+
|
39 |
+
|
40 |
+
def answer_question(image: Image.Image, question: str) -> str:
|
41 |
+
"""Run the model on the provided image & question and return its answer."""
|
42 |
+
if image is None or not question.strip():
|
43 |
+
return "Please supply **both** an image and a question."
|
44 |
+
|
45 |
+
base64_image = base64.b64encode(image.tobytes()).decode('utf-8')
|
46 |
+
|
47 |
+
# Compose a messages list in the expected multimodal chat format.
|
48 |
+
messages: List[Dict[str, Any]] = [
|
49 |
+
{
|
50 |
+
"role": "user",
|
51 |
+
"content": [
|
52 |
+
{"type": "text", "text": f"You are a GUI agent. You are given a task and your action history, with screenshots. You need to perform the next action to complete the task. \n\n## Output Format\n```\nThought: ...\nAction: ...\n```\n\n## Action Space\n\nclick(start_box='<|box_start|>(x1, y1)<|box_end|>')\nleft_double(start_box='<|box_start|>(x1, y1)<|box_end|>')\nright_single(start_box='<|box_start|>(x1, y1)<|box_end|>')\ndrag(start_box='<|box_start|>(x1, y1)<|box_end|>', end_box='<|box_start|>(x3, y3)<|box_end|>')\nhotkey(key='')\ntype(content='') #If you want to submit your input, use \"\\n\" at the end of `content`.\nscroll(start_box='<|box_start|>(x1, y1)<|box_end|>', direction='down or up or right or left')\nwait() #Sleep for 5s and take a screenshot to check for any changes.\nfinished(content='xxx') # Use escape characters \\', \\\", and \\n in content part to ensure we can parse the content in normal python string format.\n\n\n## Note\n- Use Chinese in `Thought` part.\n- Write a small plan and finally summarize your next action (with its target element) in one sentence in `Thought` part.\n\n## User Instruction\n{question.strip()}"},
|
53 |
+
],
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"role":"user",
|
57 |
+
"content": [
|
58 |
+
{"type": "image_url",
|
59 |
+
"image_url": base64_image},
|
60 |
+
],
|
61 |
+
}
|
62 |
+
]
|
63 |
+
|
64 |
+
# The pipeline returns a list with one dict when `messages` is passed via
|
65 |
+
# the `text` keyword. We extract the generated text robustly.
|
66 |
+
outputs = pipe(text=messages)
|
67 |
+
|
68 |
+
if isinstance(outputs, list):
|
69 |
+
first = outputs[0]
|
70 |
+
if isinstance(first, dict) and "generated_text" in first:
|
71 |
+
return first["generated_text"].strip()
|
72 |
+
return str(first)
|
73 |
+
|
74 |
+
return str(outputs)
|
75 |
+
|
76 |
+
|
77 |
+
demo = gr.Interface(
|
78 |
+
fn=answer_question,
|
79 |
+
inputs=[
|
80 |
+
gr.Image(type="pil", label="Upload image"),
|
81 |
+
gr.Textbox(label="Ask a question about the image", placeholder="e.g. What animal is on the candy?"),
|
82 |
+
],
|
83 |
+
outputs=gr.Textbox(label="UI‑TARS answer"),
|
84 |
+
title="UI‑TARS 1.5‑7B – Visual Q&A",
|
85 |
+
description=(
|
86 |
+
"Upload an image and ask a question. The **UI‑TARS 1.5‑7B** model will "
|
87 |
+
"answer based on the visual content. Runs completely on‑device in this Space."
|
88 |
+
),
|
89 |
+
examples=[
|
90 |
+
[
|
91 |
+
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/p-blog/candy.JPG",
|
92 |
+
"What animal is on the candy?",
|
93 |
+
]
|
94 |
+
],
|
95 |
+
cache_examples=True,
|
96 |
+
allow_flagging="never",
|
97 |
+
)
|
98 |
+
|
99 |
+
|
100 |
+
if __name__ == "__main__":
|
101 |
+
# Spaces automatically call `demo.launch()`, but running locally this
|
102 |
+
# guard lets you execute `python app.py` for quick tests.
|
103 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
accelerate
|
3 |
+
torch
|
4 |
+
sentencepiece
|
5 |
+
bitsandbytes
|
6 |
+
pillow
|
7 |
+
gradio
|