Spaces:
Sleeping
Sleeping
| import soundfile as sf | |
| import torch, pdb, os, warnings, librosa | |
| import numpy as np | |
| import onnxruntime as ort | |
| from tqdm import tqdm | |
| import torch | |
| dim_c = 4 | |
| class Conv_TDF_net_trim: | |
| def __init__( | |
| self, device, model_name, target_name, L, dim_f, dim_t, n_fft, hop=1024 | |
| ): | |
| super(Conv_TDF_net_trim, self).__init__() | |
| self.dim_f = dim_f | |
| self.dim_t = 2**dim_t | |
| self.n_fft = n_fft | |
| self.hop = hop | |
| self.n_bins = self.n_fft // 2 + 1 | |
| self.chunk_size = hop * (self.dim_t - 1) | |
| self.window = torch.hann_window(window_length=self.n_fft, periodic=True).to( | |
| device | |
| ) | |
| self.target_name = target_name | |
| self.blender = "blender" in model_name | |
| out_c = dim_c * 4 if target_name == "*" else dim_c | |
| self.freq_pad = torch.zeros( | |
| [1, out_c, self.n_bins - self.dim_f, self.dim_t] | |
| ).to(device) | |
| self.n = L // 2 | |
| def stft(self, x): | |
| x = x.reshape([-1, self.chunk_size]) | |
| x = torch.stft( | |
| x, | |
| n_fft=self.n_fft, | |
| hop_length=self.hop, | |
| window=self.window, | |
| center=True, | |
| return_complex=True, | |
| ) | |
| x = torch.view_as_real(x) | |
| x = x.permute([0, 3, 1, 2]) | |
| x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape( | |
| [-1, dim_c, self.n_bins, self.dim_t] | |
| ) | |
| return x[:, :, : self.dim_f] | |
| def istft(self, x, freq_pad=None): | |
| freq_pad = ( | |
| self.freq_pad.repeat([x.shape[0], 1, 1, 1]) | |
| if freq_pad is None | |
| else freq_pad | |
| ) | |
| x = torch.cat([x, freq_pad], -2) | |
| c = 4 * 2 if self.target_name == "*" else 2 | |
| x = x.reshape([-1, c, 2, self.n_bins, self.dim_t]).reshape( | |
| [-1, 2, self.n_bins, self.dim_t] | |
| ) | |
| x = x.permute([0, 2, 3, 1]) | |
| x = x.contiguous() | |
| x = torch.view_as_complex(x) | |
| x = torch.istft( | |
| x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True | |
| ) | |
| return x.reshape([-1, c, self.chunk_size]) | |
| def get_models(device, dim_f, dim_t, n_fft): | |
| return Conv_TDF_net_trim( | |
| device=device, | |
| model_name="Conv-TDF", | |
| target_name="vocals", | |
| L=11, | |
| dim_f=dim_f, | |
| dim_t=dim_t, | |
| n_fft=n_fft, | |
| ) | |
| warnings.filterwarnings("ignore") | |
| cpu = torch.device("cpu") | |
| if torch.cuda.is_available(): | |
| device = torch.device("cuda:0") | |
| elif torch.backends.mps.is_available(): | |
| device = torch.device("mps") | |
| else: | |
| device = torch.device("cpu") | |
| class Predictor: | |
| def __init__(self, args): | |
| self.args = args | |
| self.model_ = get_models( | |
| device=cpu, dim_f=args.dim_f, dim_t=args.dim_t, n_fft=args.n_fft | |
| ) | |
| self.model = ort.InferenceSession( | |
| os.path.join(args.onnx, self.model_.target_name + ".onnx"), | |
| providers=["CUDAExecutionProvider", "CPUExecutionProvider"], | |
| ) | |
| print("onnx load done") | |
| def demix(self, mix): | |
| samples = mix.shape[-1] | |
| margin = self.args.margin | |
| chunk_size = self.args.chunks * 44100 | |
| assert not margin == 0, "margin cannot be zero!" | |
| if margin > chunk_size: | |
| margin = chunk_size | |
| segmented_mix = {} | |
| if self.args.chunks == 0 or samples < chunk_size: | |
| chunk_size = samples | |
| counter = -1 | |
| for skip in range(0, samples, chunk_size): | |
| counter += 1 | |
| s_margin = 0 if counter == 0 else margin | |
| end = min(skip + chunk_size + margin, samples) | |
| start = skip - s_margin | |
| segmented_mix[skip] = mix[:, start:end].copy() | |
| if end == samples: | |
| break | |
| sources = self.demix_base(segmented_mix, margin_size=margin) | |
| """ | |
| mix:(2,big_sample) | |
| segmented_mix:offset->(2,small_sample) | |
| sources:(1,2,big_sample) | |
| """ | |
| return sources | |
| def demix_base(self, mixes, margin_size): | |
| chunked_sources = [] | |
| progress_bar = tqdm(total=len(mixes)) | |
| progress_bar.set_description("Processing") | |
| for mix in mixes: | |
| cmix = mixes[mix] | |
| sources = [] | |
| n_sample = cmix.shape[1] | |
| model = self.model_ | |
| trim = model.n_fft // 2 | |
| gen_size = model.chunk_size - 2 * trim | |
| pad = gen_size - n_sample % gen_size | |
| mix_p = np.concatenate( | |
| (np.zeros((2, trim)), cmix, np.zeros((2, pad)), np.zeros((2, trim))), 1 | |
| ) | |
| mix_waves = [] | |
| i = 0 | |
| while i < n_sample + pad: | |
| waves = np.array(mix_p[:, i : i + model.chunk_size]) | |
| mix_waves.append(waves) | |
| i += gen_size | |
| mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(cpu) | |
| with torch.no_grad(): | |
| _ort = self.model | |
| spek = model.stft(mix_waves) | |
| if self.args.denoise: | |
| spec_pred = ( | |
| -_ort.run(None, {"input": -spek.cpu().numpy()})[0] * 0.5 | |
| + _ort.run(None, {"input": spek.cpu().numpy()})[0] * 0.5 | |
| ) | |
| tar_waves = model.istft(torch.tensor(spec_pred)) | |
| else: | |
| tar_waves = model.istft( | |
| torch.tensor(_ort.run(None, {"input": spek.cpu().numpy()})[0]) | |
| ) | |
| tar_signal = ( | |
| tar_waves[:, :, trim:-trim] | |
| .transpose(0, 1) | |
| .reshape(2, -1) | |
| .numpy()[:, :-pad] | |
| ) | |
| start = 0 if mix == 0 else margin_size | |
| end = None if mix == list(mixes.keys())[::-1][0] else -margin_size | |
| if margin_size == 0: | |
| end = None | |
| sources.append(tar_signal[:, start:end]) | |
| progress_bar.update(1) | |
| chunked_sources.append(sources) | |
| _sources = np.concatenate(chunked_sources, axis=-1) | |
| # del self.model | |
| progress_bar.close() | |
| return _sources | |
| def prediction(self, m, vocal_root, others_root, format): | |
| os.makedirs(vocal_root, exist_ok=True) | |
| os.makedirs(others_root, exist_ok=True) | |
| basename = os.path.basename(m) | |
| mix, rate = librosa.load(m, mono=False, sr=44100) | |
| if mix.ndim == 1: | |
| mix = np.asfortranarray([mix, mix]) | |
| mix = mix.T | |
| sources = self.demix(mix.T) | |
| opt = sources[0].T | |
| if format in ["wav", "flac"]: | |
| sf.write( | |
| "%s/%s_main_vocal.%s" % (vocal_root, basename, format), mix - opt, rate | |
| ) | |
| sf.write("%s/%s_others.%s" % (others_root, basename, format), opt, rate) | |
| else: | |
| path_vocal = "%s/%s_main_vocal.wav" % (vocal_root, basename) | |
| path_other = "%s/%s_others.wav" % (others_root, basename) | |
| sf.write(path_vocal, mix - opt, rate) | |
| sf.write(path_other, opt, rate) | |
| if os.path.exists(path_vocal): | |
| os.system( | |
| "ffmpeg -i %s -vn %s -q:a 2 -y" | |
| % (path_vocal, path_vocal[:-4] + ".%s" % format) | |
| ) | |
| if os.path.exists(path_other): | |
| os.system( | |
| "ffmpeg -i %s -vn %s -q:a 2 -y" | |
| % (path_other, path_other[:-4] + ".%s" % format) | |
| ) | |
| class MDXNetDereverb: | |
| def __init__(self, chunks): | |
| self.onnx = "uvr5_weights/onnx_dereverb_By_FoxJoy" | |
| self.shifts = 10 #'Predict with randomised equivariant stabilisation' | |
| self.mixing = "min_mag" # ['default','min_mag','max_mag'] | |
| self.chunks = chunks | |
| self.margin = 44100 | |
| self.dim_t = 9 | |
| self.dim_f = 3072 | |
| self.n_fft = 6144 | |
| self.denoise = True | |
| self.pred = Predictor(self) | |
| def _path_audio_(self, input, vocal_root, others_root, format): | |
| self.pred.prediction(input, vocal_root, others_root, format) | |
| if __name__ == "__main__": | |
| dereverb = MDXNetDereverb(15) | |
| from time import time as ttime | |
| t0 = ttime() | |
| dereverb._path_audio_( | |
| "雪雪伴奏对消HP5.wav", | |
| "vocal", | |
| "others", | |
| ) | |
| t1 = ttime() | |
| print(t1 - t0) | |
| """ | |
| runtime\python.exe MDXNet.py | |
| 6G: | |
| 15/9:0.8G->6.8G | |
| 14:0.8G->6.5G | |
| 25:炸 | |
| half15:0.7G->6.6G,22.69s | |
| fp32-15:0.7G->6.6G,20.85s | |
| """ | |