File size: 7,832 Bytes
0de41d8 ff907d0 0de41d8 ff907d0 0de41d8 ff907d0 0de41d8 ff907d0 0de41d8 ff907d0 0de41d8 ff907d0 0de41d8 ff907d0 0de41d8 ff907d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import torch
import os
import shutil
import tempfile
import gradio as gr
from PIL import Image
from rembg import remove
import sys
import uuid
import subprocess
from glob import glob
import requests
from huggingface_hub import snapshot_download
import io
from fastapi import UploadFile, File, HTTPException
from fastapi.responses import FileResponse
# Download models
os.makedirs("ckpts", exist_ok=True)
snapshot_download(
repo_id = "pengHTYX/PSHuman_Unclip_768_6views",
local_dir = "./ckpts"
)
os.makedirs("smpl_related", exist_ok=True)
snapshot_download(
repo_id = "fffiloni/PSHuman-SMPL-related",
local_dir = "./smpl_related"
)
# Folder containing example images
examples_folder = "examples"
# Retrieve all file paths in the folder
images_examples = [
os.path.join(examples_folder, file)
for file in os.listdir(examples_folder)
if os.path.isfile(os.path.join(examples_folder, file))
]
def remove_background(input_pil, remove_bg):
temp_dir = tempfile.mkdtemp()
unique_id = str(uuid.uuid4())
image_path = os.path.join(temp_dir, f'input_image_{unique_id}.png')
try:
if isinstance(input_pil, Image.Image):
image = input_pil
else:
image = Image.open(input_pil)
image = image.transpose(Image.FLIP_LEFT_RIGHT)
image.save(image_path)
except Exception as e:
shutil.rmtree(temp_dir)
raise gr.Error(f"Error downloading or saving the image: {str(e)}")
if remove_bg is True:
removed_bg_path = os.path.join(temp_dir, f'output_image_rmbg_{unique_id}.png')
try:
img = Image.open(image_path)
result = remove(img)
result.save(removed_bg_path)
os.remove(image_path)
except Exception as e:
shutil.rmtree(temp_dir)
raise gr.Error(f"Error removing background: {str(e)}")
return removed_bg_path, temp_dir
else:
return image_path, temp_dir
def run_inference(temp_dir, removed_bg_path):
inference_config = "configs/inference-768-6view.yaml"
pretrained_model = "./ckpts"
crop_size = 740
seed = 600
num_views = 7
save_mode = "rgb"
try:
subprocess.run(
[
"python", "inference.py",
"--config", inference_config,
f"pretrained_model_name_or_path={pretrained_model}",
f"validation_dataset.crop_size={crop_size}",
f"with_smpl=false",
f"validation_dataset.root_dir={temp_dir}",
f"seed={seed}",
f"num_views={num_views}",
f"save_mode={save_mode}"
],
check=True
)
removed_bg_file_name = os.path.splitext(os.path.basename(removed_bg_path))[0]
out_folder_path = "out"
out_folder_objects = os.listdir(out_folder_path)
print(f"Objects in '{out_folder_path}':")
for obj in out_folder_objects:
print(f" - {obj}")
specific_out_folder_path = os.path.join(out_folder_path, removed_bg_file_name)
if os.path.exists(specific_out_folder_path) and os.path.isdir(specific_out_folder_path):
specific_out_folder_objects = os.listdir(specific_out_folder_path)
print(f"\nObjects in '{specific_out_folder_path}':")
for obj in specific_out_folder_objects:
print(f" - {obj}")
else:
print(f"\nThe folder '{specific_out_folder_path}' does not exist.")
output_video = glob(os.path.join(f"out/{removed_bg_file_name}", "*.mp4"))
output_objects = glob(os.path.join(f"out/{removed_bg_file_name}", "*.obj"))
return output_video, output_objects
except subprocess.CalledProcessError as e:
return f"Error during inference: {str(e)}"
def process_image(input_pil, remove_bg, progress=gr.Progress(track_tqdm=True)):
torch.cuda.empty_cache()
result = remove_background(input_pil, remove_bg)
if isinstance(result, str) and result.startswith("Error"):
raise gr.Error(f"{result}")
removed_bg_path, temp_dir = result
output_video, output_objects = run_inference(temp_dir, removed_bg_path)
if isinstance(output_video, str) and output_video.startswith("Error"):
shutil.rmtree(temp_dir)
raise gr.Error(f"{output_video}")
shutil.rmtree(temp_dir)
torch.cuda.empty_cache()
return output_video[0], output_objects[0], output_objects[1]
css="""
div#col-container{
margin: 0 auto;
max-width: 982px;
}
div#video-out-elm{
height: 323px;
}
"""
def gradio_interface():
with gr.Blocks(css=css) as app:
with gr.Column(elem_id="col-container"):
gr.Markdown("# PSHuman: Photorealistic Single-image 3D Human Reconstruction using Cross-Scale Multiview Diffusion and Explicit Remeshing")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/pengHTYX/PSHuman">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://penghtyx.github.io/PSHuman/">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
<a href="https://arxiv.org/pdf/2409.10141">
<img src='https://img.shields.io/badge/ArXiv-Paper-red'>
</a>
<a href="https://huggingface.co/spaces/fffiloni/PSHuman?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
<a href="https://huggingface.co/fffiloni">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF">
</a>
</div>
""")
with gr.Group():
with gr.Row():
with gr.Column(scale=2):
input_image = gr.Image(label="Image input", type="pil", image_mode="RGBA", height=480)
remove_bg = gr.Checkbox(label="Need to remove BG ?", value=False)
submit_button = gr.Button("Process")
with gr.Column(scale=4):
output_video= gr.Video(label="Output Video", elem_id="video-out-elm")
with gr.Row():
output_object_mesh = gr.Model3D(label=".OBJ Mesh", height=240)
output_object_color = gr.Model3D(label=".OBJ colored", height=240)
gr.Examples(
examples = examples_folder,
inputs = [input_image],
examples_per_page = 11
)
submit_button.click(process_image, inputs=[input_image, remove_bg], outputs=[output_video, output_object_mesh, output_object_color])
return app
if __name__ == "__main__":
gradio_app = gradio_interface()
fastapi_app = gradio_app.app
@fastapi_app.post("/api/3d-reconstruct")
async def reconstruct(
image_file: UploadFile = File(...),
remove_bg: bool = False
):
try:
contents = await image_file.read()
pil_image = Image.open(io.BytesIO(contents)).convert("RGBA")
video_path, mesh_path, colored_path = process_image(pil_image, remove_bg)
return FileResponse(
colored_path,
media_type="application/octet-stream",
filename=os.path.basename(colored_path)
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
gradio_app.launch(show_api=False, show_error=True, ssr_mode=False)
|