Spaces:
Paused
Paused
File size: 10,460 Bytes
d057260 54db85d d057260 54db85d d057260 54db85d 0232bd0 54db85d d057260 0232bd0 d057260 54db85d d057260 0232bd0 d057260 0232bd0 d057260 0232bd0 d057260 0232bd0 d057260 0232bd0 d057260 0232bd0 54db85d 0232bd0 54db85d 0232bd0 54db85d 0232bd0 d057260 0232bd0 d057260 0232bd0 d057260 54db85d 0232bd0 54db85d d057260 0232bd0 d057260 0232bd0 d057260 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import json
import re
import os
# Fix OMP_NUM_THREADS warning
os.environ['OMP_NUM_THREADS'] = '1'
# Optional: Authenticate for gated models (like Llama)
# Uncomment if you want to use Llama 3.1 and have access
# from huggingface_hub import login
# token = os.getenv("HF_TOKEN")
# if token:
# login(token=token)
# Load the model and tokenizer
# Using Qwen2.5 7B Instruct - no approval needed, excellent for structured outputs
# Alternative: "mistralai/Mistral-7B-Instruct-v0.2" or "microsoft/Phi-3-mini-4k-instruct"
# For Llama: "meta-llama/Llama-3.1-8B-Instruct" (requires approval + authentication)
MODEL_NAME = os.getenv("HF_MODEL_NAME", "Qwen/Qwen2.5-7B-Instruct")
print(f"Loading model and tokenizer: {MODEL_NAME}...")
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
trust_remote_code=True
)
# Fix pad_token if not set (important for Qwen models)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
# Load model
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
dtype=torch.float16, # Use dtype instead of torch_dtype
device_map="auto",
trust_remote_code=True
)
print(f"Model {MODEL_NAME} loaded successfully!")
def extract_json(text: str) -> dict:
"""Extract JSON from model response"""
# Try to find JSON object in the text
json_match = re.search(r'\{[\s\S]*\}', text)
if json_match:
try:
return json.loads(json_match.group(0))
except json.JSONDecodeError:
# Try to fix common JSON issues
cleaned = json_match.group(0)
# Remove trailing commas
cleaned = re.sub(r',(\s*[}\]])', r'\1', cleaned)
try:
return json.loads(cleaned)
except:
pass
return None
def generate_recipe(
ingredients: str,
dietary_prefs: str = "None",
allergies: str = "None",
favorite_cuisines: str = "Any"
) -> str:
"""Generate a recipe from ingredients"""
if not ingredients or not ingredients.strip():
return "β Please provide at least one ingredient."
# Parse ingredients
ingredient_list = [ing.strip() for ing in ingredients.split(',') if ing.strip()]
if not ingredient_list:
return "β Please provide valid ingredients separated by commas."
# Construct the prompt
# Simplified prompt for better generation
prompt = f"""Create a recipe using these ingredients: {', '.join(ingredient_list)}.
Requirements:
- Use only provided ingredients (can add salt, pepper, oil, water)
- {"AVOID: " + allergies if allergies and allergies.lower() != "none" else "No allergies"}
- {"Dietary: " + dietary_prefs if dietary_prefs and dietary_prefs.lower() != "none" else "No restrictions"}
- {"Cuisine: " + favorite_cuisines if favorite_cuisines and favorite_cuisines.lower() != "any" else "Any cuisine"}
Return ONLY this JSON format (no other text):
{{
"title": "Recipe name",
"description": "Brief description",
"ingredients": ["ingredient 1 with quantity", "ingredient 2"],
"instructions": ["Step 1", "Step 2"],
"prep_time": "time in minutes"
}}"""
# Format for Qwen2.5 chat template
messages = [
{"role": "system", "content": "You are a helpful chef assistant. Always respond with valid JSON only."},
{"role": "user", "content": prompt}
]
# Tokenize using chat template
try:
# Qwen2.5 uses apply_chat_template
formatted_prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Tokenize the formatted prompt
encoded = tokenizer(
formatted_prompt,
return_tensors="pt",
padding=False,
truncation=True,
max_length=2048
)
input_ids = encoded.input_ids.to(model.device)
attention_mask = encoded.attention_mask.to(model.device) if encoded.attention_mask is not None else None
except Exception as e:
print(f"Chat template failed, using direct prompt: {e}")
# Fallback: use prompt directly
encoded = tokenizer(
prompt,
return_tensors="pt",
padding=False,
truncation=True,
max_length=2048
)
input_ids = encoded.input_ids.to(model.device)
attention_mask = encoded.attention_mask.to(model.device) if encoded.attention_mask is not None else None
# Create attention mask if not provided
if attention_mask is None:
attention_mask = (input_ids != tokenizer.pad_token_id).long().to(model.device)
# Generate
print(f"Generating recipe... Input length: {input_ids.shape[1]}")
with torch.no_grad():
try:
outputs = model.generate(
input_ids,
attention_mask=attention_mask,
max_new_tokens=1000, # Reduced for faster generation
temperature=0.7, # Slightly lower for more focused output
top_p=0.9,
repetition_penalty=1.2, # Increased to reduce repetition
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
print(f"Generation complete. Output length: {outputs[0].shape[0]}")
except Exception as e:
print(f"Generation error: {e}")
import traceback
traceback.print_exc()
return f"β Error during generation: {str(e)}"
# Decode - extract only the new tokens
input_length = input_ids.shape[1]
output_length = outputs[0].shape[0]
print(f"Decoding response. Input: {input_length}, Output: {output_length}")
if output_length > input_length:
response = tokenizer.decode(outputs[0][input_length:], skip_special_tokens=True)
else:
# Fallback: decode entire output
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(f"Response length: {len(response)}")
print(f"Response preview: {response[:200]}")
# Debug: check if response is empty
if not response or len(response.strip()) == 0:
return f"β Empty response from model. Input length: {input_length}, Output length: {output_length}. Full output: {tokenizer.decode(outputs[0], skip_special_tokens=True)[:500]}"
# Extract JSON
recipe_data = extract_json(response)
if not recipe_data:
print(f"Failed to extract JSON. Full response: {response}")
return f"β Failed to generate valid recipe JSON.\n\nRaw response (first 1000 chars):\n\n{response[:1000]}\n\nPlease try again."
# Validate structure
required_fields = ["title", "description", "ingredients", "instructions", "prep_time"]
missing_fields = [field for field in required_fields if field not in recipe_data]
if missing_fields:
return f"β Generated recipe missing required fields: {', '.join(missing_fields)}\n\nResponse: {response[:500]}"
# Format output
output = f"""# {recipe_data['title']}
**{recipe_data['description']}**
β±οΈ **Prep Time:** {recipe_data['prep_time']}
## Ingredients
"""
for ingredient in recipe_data['ingredients']:
output += f"- {ingredient}\n"
output += "\n## Instructions\n"
for i, instruction in enumerate(recipe_data['instructions'], 1):
output += f"{i}. {instruction}\n"
output += f"\n---\n\n**JSON Output:**\n```json\n{json.dumps(recipe_data, indent=2)}\n```"
return output
# Create Gradio interface
with gr.Blocks(title="PantryChef - AI Recipe Generator", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π₯ PantryChef - AI Recipe Generator
Generate delicious recipes from the ingredients you have in your pantry!
Simply enter your available ingredients, and our AI chef will create a custom recipe for you.
""")
with gr.Row():
with gr.Column(scale=2):
ingredients_input = gr.Textbox(
label="Available Ingredients",
placeholder="e.g., Chicken, Rice, Tomatoes, Onions, Garlic",
lines=3,
info="Enter ingredients separated by commas"
)
with gr.Row():
dietary_prefs_input = gr.Textbox(
label="Dietary Preferences",
placeholder="e.g., Vegetarian, Vegan, Keto",
value="None"
)
allergies_input = gr.Textbox(
label="Allergies (MUST AVOID)",
placeholder="e.g., Nuts, Shellfish, Dairy",
value="None"
)
favorite_cuisines_input = gr.Textbox(
label="Favorite Cuisines",
placeholder="e.g., Italian, Asian, Mexican",
value="Any"
)
generate_btn = gr.Button("Generate Recipe π³", variant="primary", size="lg")
with gr.Column(scale=3):
output = gr.Markdown(label="Generated Recipe")
# Examples
gr.Examples(
examples=[
["Chicken, Rice, Tomatoes, Onions, Garlic", "None", "None", "Any"],
["Eggs, Flour, Milk, Butter, Sugar", "None", "Dairy", "Any"],
["Tofu, Broccoli, Carrots, Soy Sauce, Ginger", "Vegan", "None", "Asian"],
["Pasta, Olive Oil, Garlic, Basil, Tomatoes", "Vegetarian", "None", "Italian"],
],
inputs=[ingredients_input, dietary_prefs_input, allergies_input, favorite_cuisines_input]
)
generate_btn.click(
fn=generate_recipe,
inputs=[ingredients_input, dietary_prefs_input, allergies_input, favorite_cuisines_input],
outputs=output
)
gr.Markdown("""
---
### π‘ Tips
- Be specific with your ingredients for better results
- The AI may suggest common pantry staples (salt, pepper, oil) if needed
- Allergies are strictly avoided in generated recipes
- Dietary preferences help tailor the recipe to your needs
""")
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)
|